

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102 Academic Year: 2021-22

Ist Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2021 – 22 academic year (2021-22 admitted regular batch).

SI.	Catagory	Subject Code				Hours/Wee	k	Exa	aminatior	n Marks
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	BSC	21UCH110C	Engineering Chemistry	3.0	3	-	-	50	50	100
2.	CV	21UCV111C	Engineering Mechanics	3.0	3	-	-	50	50	100
3.	HSS	21UHS106C	Communicative English	2.0	2	-	-	50	50	100
4.	HSS	21UHS115C	Innovation and Design Thinking	2.0	2	-	-	50	50	100
5.	BSC	21UMA101C	Engineering Mathematics-I	3.0	3	-	-	50	50	100
6	ME	21UME112C	Elements of Mechanical Engineering	3.0	3	-	-	50	50	100
7.	BSC	21UCH114L	Engineering Chemistry Laboratory	1.0	-	-	2	50	50	100
8.	ME	21ME113L	Computer Aided Engineering Drawing	3.0	2	-	2	50	50	100
			Total	20	18	-	04	400	400	800

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102 Academic Year: 2022-23

IInd Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2021 – 22 academic year (2021-22 admitted regular batch).

SI.	Catagoria	Subject				Hours/Wee	k	Exa	aminatior	n Marks
No.	Category	Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	BSC	21UMA201C	Engineering Mathematics-II	3.0	3	-	-	50	50	100
2.	BSC	21UPH202C	Engineering Physics	3.0	3	-	-	50	50	100
3.	CS	21UCS203C	Principles of Programming with C	3.0	3	-	-	50	50	100
4.	EC	21UEC204C	Basic Electronics	3.0	2	2	-	50	50	100
5.	EE	21UEE205C	Basic Electrical Engineering	3.0	3	-	-	50	50	100
6	HSS	21UHS206C	Professional Writing Skills in English	2.0	2	-	-	50	50	100
7.	HSS	21UHS207C	Scientific Foundation of Health	1.0	-	-	2	50	50	100
8.	BSC	21UPH208L	Engineering Physics Laboratory	1.0	-	-	2	50	50	100
9.	CS	21UCS209L	Programming Practice Using C	1.0	-	-	2	50	50	100
			20	16	2	6	450	450	900	

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102 Academic Year: 2022-23

IIIrd Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2022 – 23 academic year (2021-22 admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.	Catagony	Subject Code				Hours/Wee	k	Exa	aminatior	n Marks
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	BSC	21UMA302C	Numerical Techniques and Fourier Series	3.0	3	-	-	50	50	100
2.	PCC	21UME301C	Strength of Materials	3.0	2	2	-	50	50	100
3.	PCC	21UME308C	Engineering Thermodynamics	3.0	2	2	-	50	50	100
4.	PCC	21UME303C	Manufacturing Technology-I	3.0	3	-	-	50	50	100
5.	PCC	21UME304L	Manufacturing Technology Lab	1.0	-	-	2	50	50	100
6	PCC	21UME305L	Mechanical Drawing and GD & T Lab	2.0	-	-	3	50	50	100
7.	AEC	21UME307L	Python Programming Lab	1.0	-	-	2	50	50	100
8.	UHV	21UHS322C	UHV	1.0	1	-	-	50	50	100
9.	HSSM	21UHS324C	SK/BK or Cl	1.0	1	-	-	50	50	100
			Total	18	12	04	08	450	450	900

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102 Academic Year : 2022-23

IVth Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2022 – 23 academic year (2021-22 admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.	Catagory	Subject				Hours/Wee	k	Exa	aminatio	n Marks
No.	Category	Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	BSC	21UMA402C	Partial differential equations and Statistics	3.0	3	-	-	50	50	100
2.	PCC	21UME 401 C	Material Science & Metallurgy	3.0	3	-	-	50	50	100
3.	PCC	21UME 408 C	Manufacturing Technology-II	3.0	3	-	-	50	50	100
4.	PCC	21UME 403 C	Fluid Mechanics	3.0	2	2	-	50	50	100
5.	PCC	21UME 404 C	Theory of Machines	3.0	2	2	-	50	50	100
6	PCC	21UME 405 L	Material Testing and Instrumentation Lab	1.0	-	-	2	50	50	100
7.	PCC	21UME 406 L	CAMD Lab	1.0	-	-	2	50	50	100
8.	PCC	21UME 407L	Fuels and IC Engine Lab	1.0	-	-	2	50	50	100
9.	INT	21UME422I	Internship-I	2.0	-	-	4	50	50	100
10.	HSSM	21UHS421C	Constitution of India	1.0	1	-	-	50	50	100
			21	14	4	10	500	500	1000	

INT: Summer Internship – I. (Annexure-I A)

For awarding B.E. (Mechanical Engineering) degree, each student is required to complete minimum of 03 weeks of Internship during 4th semester summer to earn 02 credits which will be evaluated during 5th Semester.

UHV: Question paper will be of objective type. Students have to pass the subject compulsorily, however marks will not be considered for awarding Grade/Class/Rank.

BASAVESHWAR ENGINEERING COLLEGE, BAGALKOTE- 587 102

DEPARTMENT OF MECHANICAL ENGINEERING Academic Year: 2023-24

Vth Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2023 – 24 academic year (2021-22 admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.						Hours	/Week	E	Examinati	on Marks
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1.	PCC	21UME 501 C	Design of Machine Elements	3.0	3	-	-	50	50	100
2.	PCC	21UME 502 C	Energy Conversion Engineering	3.0	3	-	-	50	50	100
3.	PCC	21UME 503 C	Heat Transfer	3.0	3	-	-	50	50	100
4.	PCC	21UME 504 L	Fluid Mechanics and Machinery Lab	1.0	-	-	2	50	50	100
5.	PEC	21UME XXX E	Elective - I	3.0	3	-	-	50	50	100
6	OEC	XXXX XXX X	Open Elective - I	3.0	3	-	-	50	50	100
7.	HSSM	21UME 507 H	Management and Entrepreneurship	3.0	3	-	-	50	50	100
8.	INT	XXXX XXX X	Summer Internship-II	2.0	-	-	4	50	50	100
9.	AEC	XXXX XXX X	Soft Skill 2	2.0	2	-	-	50	50	100
			Total	23	20		6	450	450	900

INT: Summer Internship – II.

For awarding B.E. (Mechanical Engineering) degree, each student is required to complete minimum of 04 weeks of Internship during 4th semester summer to earn 02 credits which will be awarded during 5th Semester.

OEC: Open Elective – I is offered by other departments to Mechanical Engineering Students.

PEC: Ele The Students have to select any or	ective – I ne elective from the following table	OEC: E The Students have to select any o	ective – I ne elective from the following table
Course Code Course		Course Code	Course
21 UME 511 E	Introduction to Artificial Intelligence	21 UME 537 N	Product Design & Rapid Prototyping
21 UME 513E	Non Traditional Machining	21 UME 534 N	Operations Research
21 UME 514E Additive Manufacturing			

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102

Academic Year : 2023-24

VIth Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2023 – 24 academic year (2021-22 admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.	Catagomy	Subject Code	Subject	Cradita	+	lours/Week		Exa	mination	Marks
No.	Category	Subject Code	Subject	Creats	Lecture	Tutorial	Practical	CIE	SEE	Total
1	PCC	21UME601 C	Mechanical Vibrations	3.0	3	-	-	50	50	100
2	PCC	21UME602 C	Finite Element Methods	3.0	3	-	-	50	50	100
3	PCC	21UME603 C	Operations Research	3.0	3	-	-	50	50	100
4	PCC	21UME604 L	Heat Transfer Lab	1.0	-	-	2	50	50	100
5	PCC	21UME605 L	Dynamics Lab	1.0	-	-	2	50	50	100
6	PEC	21UMEXXX E	Professional Elective Course- II	3.0	3	-	-	50	50	100
7	OEC	21UMEXXX N	Open Elective Course- II	3.0	3	-	-	50	50	100
8	OEC	21UMEXXX N	Open Elective Course- III	3.0	3	-	-	50	50	100
9	HSSM	21UHSXXX C	Environmental Studies	1.0	1	-	-	50	50	100
10	MP	21UME606 P	Mini Project	2.0	-	-	4	50	50	100
11	11 UVS 21UHS600 C Indian Knowledge System		1.0	1	-	-	50	50	100	
	Total			24	20	-	8	550	550	1100

OEC: Open Elective – II and III is offered by other departments to Mechanical Engineering Students

MP: Mini Project

PEC	: Elective – II	OEC: Ele	ective – II
The Students have to select an	y one elective from the following table	The Students have to select any or	ne elective from the following table
Subject Code	Subject	Subject Code	Subject
21UME 611 E Reverse Engineering		21UME 621 N	Engineering Economics
21UME 612 E	Advanced Materials Technology	21UME 622 N	Quality Control Engineering
21UME 614 E	Project Management		
21UME 615 E	Power Plant Engineering	OEC: Ele	ctive – III
		The Students have to select any or	ne elective from the following table
		21UME 623 N	Fluid Power Automation
		21UME 624 N	Advanced Manufacturing Technology
		21UME 635N	Turbo Machines

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOTE- 587 102

Academic Year: 2024-25

VIIth/VIIIth Semester B.E. (Mechanical Engineering)

Scheme of teaching and examination for B.E. I to VIII semesters (160 credits NEP) commencing from 2024 – 25 academic year (2021-22 admitted regular batch and Diploma Lateral Entry 2022-23 Batch).

SI.						Hours	/Week	E	Examination Marks	
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total
1	PEC	21UME7XXE	Elective-III	3.0	3	-	-	50	50	100
2	PEC	21UME7XXE	Elective-IV	3.0	3	-	-	50	50	100
3	PEC	21UME7XXE	Elective-V	3.0	3	-	-	50	50	100
3	Project	21UME7XXP	Project Work	8.0	-	-	4	50	50	100
4	AEC	21UME7XXL	CAE/CNC Lab	1.0	-	-	2	50	50	100
			Total	18	9	-	8	250	250	500

OR

SI.	Catagory	Subject Code	Subject	Cradita	Hours/Wee	lours/Week			Examination Marks		
No.	Category	Subject Code	Subject	Credits	Lecture	Tutorial	Practical	CIE	SEE	Total	
1.	AEC	21UME811E	Research Methodology and IPR	2.0	2	-	-	50	50	100	
2.	AEC	21UMEXXXO	MOOCs	3.0	-	-	-	-	-	-	
3.	Seminar	21UME821S	Technical Seminar	1.0	-	-	-	100		100	
4.	INT	21UME831I	Industry/Technical Internship	10.00	-	-	-	50	50	100	
			Total	16				200	100	300	

	PEC: Elective – III		PEC: Elective – IV		PEC: Elective – V
(The Studen	ts have to select any one elective	(The Student	ts have to select any one elective	(The Student	s have to select any one elective from the
fre	from the following table)		from the following table)		following table)
Subject Subject		Subject	Subject	Subject Code	Subject
Code		Code			
21UME711E	Sustainable Engineering	21UME721E	Control Engineering	21UME731E	Operations Management
21111/157125	Product Design & Rapid		Hydraulics and Pnoumatics	21110/157225	Supply Chain Management
2101012/121	Prototyping	2101012/222	right address and Friedmatics	21010127321	
21111/157125	Information Technology	21111/157225	Theory of Electicity	21110/157225	Engineering Economics
2101012/132	Approaches in Manufacturing	21010127232		21010127552	
21UME714E	Composite Materials	21UME724E	Design for Manufacturing	21UME734E	Product Life Cycle Management

Swapping Facility

Students can swap VII and VIII Semester Scheme of Teaching and Examinations to accommodate research internships/ industry internships against the corresponding semesters whether VII or VIII semester is completed during the beginning of IV year.

At the beginning of IV years of the program i.e., after VI semester, VII semester class work and VIII semester Research Internship /Industrial Internship shall be permitted to be operated simultaneously so that students have ample opportunity for an internship. Research/Industrial Internship shall be carried out at an Industry, NGO, MSME, Innovation centre, Incubation centre, Start-up, Centre of Excellence (CoE), Study Centre established in the reputed research organizations/Institutes.

The mandatory Research internship /Industry internship are for 14 to 20 weeks. The internship shall be considered as a head of passing and shall be considered for the award of a degree. Those, who do not take up/complete the internship shall be declared to fail and shall have to complete it during the subsequent examination after satisfying the internship requirements.

Research internship: A research internship is intended to offer the flavor of current research going on in the research field. It helps students get familiarized with the field and imparts the skill required for carrying out research.

Industry internship: Is an extended period of work experience undertaken by students to supplement their degree for professional development. It also helps them learn to overcome unexpected obstacles and successfully navigate organizations, perspectives, and cultures. Dealing with contingencies helps students recognize, appreciate, and adapt to organizational realities by tempering their knowledge with practical constraints.

With the consent of the internal guide and Principal, students shall be allowed to carry out the internship at their hometown (within or outside the state or abroad), provided favorable facilities are available for the internship and the student remains regularly in contact with the internal guide. Department/College will not bear any cost involved in carrying out the internship by students. However, students can receive any financial assistance extended by the organization.

21UME 301 C	STRENGTH OF MATERIALS	03 - Credits (2 : 2 : 0)
Hrs./Week : 03		CIE Marks : 50
Total Hours : 40		SEE Marks : 100

Unit - I	10 Hrs
Simple stress and strain: Introduction, stress, strain, mechanical properties of Linear elasticity, Hooke's Law and Poisson's ratio, Stress-Strain relation – behavior for Mild steel and non ferrous metals. Extension / Shortening of a bar, bars sections varying in steps, bars with continuously varying cross sections (ci rectangular), Elongation due to self weight, Principle of super position.	materials, in Tension with cross rcular and
constants, simple shear stress, shear strain, temperature stresses (including compo	ound bars).
UNIT - II	10 Hrs
Compound stresses: Introduction, plane stress, stresses on inclined sections stresses and maximum shear stresses, Mohr's circle (introduction). Bending moment and Shear force in beams: Types of beams, loads and reactions, forces and bending moments, sign conventions, relationship between shear force a bending moments, shear force and bending moment diagrams for different beams to concentrated loads, uniform distributed load (udl) and couple for different types	s, principal shear and subjected s of beams.
Unit - III	10 Hrs
 Thick and thin cylinders: Stresses in thin cylinders, changes in dimensions of cylind (diameter, length and volume), Thick cylinders subjected to internal and external p (Lame's equation), (compound cylinders not included). Bending and shear stresses in beams: Introduction, theory of simple bending, assusingle bending, relationship between bending stresses and radius of curvature, shear stresses, symmetric 	er ressures umptions in relationship
sections.	ai i allu i
Unit - IV	10 Hrs
Course Outcomes	
At the end of the course the student should be able to:	
 CO1: Analyze the different types of physical loads, properties of the materials, such strains, elasticity, deformation for varying cross section, compound bars, self-weight stresses. CO2: Analyze the compound stresses analytically, and graphically. And cylinders exposed and external pressures from the view point of stresses developed and change in their dime CO3: Demonstrate the understanding of the shear force and bending moment and estim of beams of subjected to different loads with different end conditions of beams. Analyse 	as stresses, and thermal d to internal ensions. ate bending

CO4: Demonstrate the understanding of the concept torque, stresses developed and the rigidity of the mechanical elements transmitting power or subjected to twisting moment. Columns with different end conditions subjected to axial loading.

Reference Books:

- 1. "Strength of Materials", S.S.Bhavikatti, Vikas publications House Pvt. Ltd., 2nd Ed., 2006.
- 2. "Mechanics of materials" R. C. Hibbeler, Printice Hall, Pearson Edu., 2005
- 3. "strength of material" by Dr.R.K.Bansal,Laxmi publications,fourth edition 2010.
- 4. "Mechanics of Materials" by K.V. Rao, G.C. Raju, First Edition, 2007
- 5. "Mechanics of materials" James M. Gere, Thomson, Fifth edition 2004
- 6 "Mechanics of materials" Ferdinand Beer & amp; Russell Johnstan, TATA MaGrawHill-2003.
- 7. "Mechanics of Materials" by H. J.Sawant, Technical publications, 2010

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course				Pro	gram	me	Outc	ome	s (P	Os)			Program Specific Outcomes (PSOs)			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	2	3	1	-	-	-	2	1	-	2	-	-	-	-
CO2	3	3	2	2	1	-	-	-	1	2	-	2	-	-	-	-
CO3	3	3	1	3	1	-	-	-	2	1	-	2	-	-	-	-
CO4	3	3	1	2	1	-	-	-	2	1	-	2	-	-	-	-

** Each CO to be written with proper action word and should be assessable and quantifiable

21UME 302 C		03 - Credits]
L:T:P -26 : 26: 00	ENGINEERING THERMODYNAMICS	CIE Marks : 50	
Total Hours : 52		SEE Marks : 50	
	UNIT – I		13

13 Hrs

Work & Heat: Definition of work-according to mechanics, according to thermodynamics, examples, sign convention; Displacement work- PdV expressions for displacement work in various processes through p-v diagrams, Other types of work- Shaft work, paddle wheel work, work in straining a bar, free expansion work, electrical work; Heat- definition, units and sign convention; Comparison and differences between work and heat. Numerical Problems

First Law of Thermodynamics: Joule's experiments; Statement of the First law of thermodynamicscyclic, non-cyclic processes; Energy- modes of energy, internal energy, internal energy as a property; Specific heat- at constant volume, at constant pressure; Enthalpy; Extension of the First law to control volume- steady state-steady flow energy equation, important applications with line diagram. Numerical Problems.

UNIT – II

Second Law of Thermodynamics: Energy- High grade, low grade; Heat reservoirs-heat source and heat sink; Heat engines-definition, schematic representation, thermal efficiency; Reversed heat engines-refrigerator, heat pump, COP; Second Law of Thermodynamics- Kelvin -Planck statement, PMM II, Clasius's statement; Equivalence of the two statements; Reversible and irreversible processes- definition, factors that make a process reversible and irreversible; Carnot cycle- processes involved in Carnot cycle, PV, TS and line diagram; Carnot principles; Thermodynamic temperature scale. Numerical Problems.

Gas Power Cycles: Air standard cycles- Carnot, Otto, Diesel, Dual and Stirling cycles, PV and TS diagrams, description / process, efficiency derivation, mean effective pressure derivation, comparison of Otto, Diesel and dual cycles; Numerical Problems.

UNIT - III

13 Hrs

13 Hrs

Combustion Thermodynamics: Combustion- complete, incomplete; Air for combustion- theoretical, excess, problems;; problems; Enthalpy of formation – definition, determination of enthalpy of formation of compounds using tables, enthalpy and internal energy of combustion, Numerical problems; Combustion efficiency; Adiabatic flame temperature.

I.C. Engines: Geometrical properties of reciprocating engines; Performance parameters - indicated work, BP, IP, MEP, SFC, SEC, A/F ratio, equivalence ratio, efficiencies (mechanical, thermal / fuel conversion, volumetric), engine specific weight, engine specific volume, relationship between performance parameters; engine design and performance data analysis; Dynamometer -definition, types (Rope break and eddy current), description; Methods of FP calculation; Measurement of fuel consumption and air consumption; Heat balance sheet; Numerical problems.

UNIT IV

xx Hrs

Reciprocating Compressors: Air Compressor terminology; Operation of a single stage reciprocating air compressor; Work input of single stage- without clearance, representation on PV diagram for different processes, work done derivation for different process; Work input of single stage- with clearance, PV diagram, effect of clearance volume and volumetric efficiency; Adiabatic, isothermal and mechanical efficiencies; Multi-stage compressor- saving in work, optimum intermediate pressure, inter-cooling, minimum work for compression; Numerical problems on single stage only. Refrigeration: Vapour compression refrigeration system- dry compression, wet compression, superheated & sub cooling compression, their PH, TS diagram, description/process, analysis,

refrigerating effect, capacity, power required, COP; Air cycle refrigeration- reversed Carnot cycle, analysis for non flow system and flow system; Reversed Brayton cycle- analysis as flow system; Numerical Problems

Reference Books:

- 1. B.K.Venkanna,2010, Basic Thermodynamics(2 nd edition),PHI learning
- 2. B.K.Venkanna,2012,Applied Thermodynamics(2 nd),PHI learning
- 3. Rajaput, 2007, Engineering Thermodynamics (2 nd), Laxmi Publications

Question paper pattern for SEE:

- 1. Part A: One two marks questions covering entire syllabus for 20 marks (compulsory).
- 2. Part B: Four units, each unit carrying 2 questions of 20 marks each.
- 3. Students need to answer 4 full questions selecting one from each unit.

Course Outcomes:

After completion of the course student will be able to

CO1: Define the concepts of heat, work, and energy, develop/analyze energy application device Demonstrate a basic understanding of the First Law of Thermodynamics for energy conservation analysis of different thermodynamics processes of systems and control volumes and to estimate required balances of heat, work and energy flow (heaters, coolers, pumps, turbines, pistons, etc...

CO2: Demonstrate a basic knowledge of the Second Law of Thermodynamics and its corollaries to determine whether a cycle is possible, and to determine the maximum performance/efficiency of cycles and its application to systems and control volumes.

CO3: To write/compute stoichiometric balance chemical reactions, calculate equivalence ratios, estimate energy transfer associated with combustion problems. Analyze the performance (BP, IP, BSFC, ISFC, BSEC, BTE, ITE, Volumetric efficiency, Mechanical Efficiency,) /heat balance sheet of internal

CO4: Do thermodynamic analysis (single and multi-stage, single acting and double acting) of reciprocating compressor and optimize the power in put calculation compare and discuss single and double acting, single and multi-stage performance data. Understand the components and basic assumptions for the vapor-compression refrigeration system, demonstrate the ability to design thermodynamic cycle and to perform analysis of reversed Carnot cycle based, refrigeration and heat pump cycles using various working fluids.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes				Pro	gran	nme	Out	com	nes (POs)			Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	3	3	2	-	2	2	-	-	-	-	-	-	1	1	1	-	
CO2	3	2	3	-	2	1	-	-	-	-	-	-	0	1	1	-	
CO3	3	2	3	-	3	-	-	-	1	-	-	-	0	1	1	-	
CO4	2	1	1	-	2	1	-	-	1	-	-	1	0	1	1	-	

21UME 303 C		03 - Credits
L:T:P - 3 : 0: 0	MANUFACTURING TECHNOLOGY-I	CIE Marks : 50
Total Hours/Week: 3		SEE Marks : 100

Unit - I	10 Hrs
Introduction to manufacturing process Concept of Manufacturing process, its Selecting manufacturing processes.	importance.
Casting: Introduction to Casting process steps involved. Varieties of components produce process. Advantages & Limitations of casting process. Moulding sands - Types and Propert - types of patterns, selection of patterns - pattern allowances - Classifications of castings - mould materials and moulding methods. Special casting techniques	ed by casting ties, patterns according to
design. Numericals on gating and risering	uesign , riser
UNIT - II	10 Hrs
Welding: Welding process: Definition, Principles, Classification, Application, Advantage limitations of welding. Classification of welding process: TIG, MIG, SMAW, Flux cored arc v Thermite welding, Numericals	s & velding,
Unit - III	10 Hrs
 Forming Types of forming: Classification of forging processes-forging defects and Rolling: Classification of rolling processes- rolling mill-rolling of bars and shapes Classification of extrusion processes-extrusion equipments-examples. Drawing: Drawing of rods, wires and tubes. Sheet metal forming methods, shearin bending, stretch forming, deep forming. Spinning: spinning processes- Nur 	inspection. Extrusion: g, blanking, nericals on
drawing load and sheet metal work.	
High Velocity forming: Introduction to Explosive, Electro hydraulic and Elect forming.	romagnetic
Unit - IV	10 Hrs
Theory of Metal Cutting: Single point cutting tool nomenclature, geometry, Merce diagram and analysis, Ernst Merchant's solution (Relation of orthogonal cutting fo angle relationship, Stresses and strain in the chip, Power and Energy relation cutting, problems of Merchant's analysis, tool wear and tool failure, tool life cutting parameters on tool life, tool failure criteria, Causes of wear, Taylor's tool life problems on tool life evaluation.	hants circle rces), shear ns in metal , effects of e equation,
Reference Books:	
Production Lechnology [®] by K K Jain, Knanna Publishers,	

3. "A Text book of Production Technology", Vol II, Dhanpat rai & sons, 1992

4. "Elements workshop Technology" vol 1 & 2 by Hajra & Choudhary

Course Outcomes:

At the end of the course the student should be able to:

CO1-The student will be having the capability of select and apply suitable manufacturing process to manufacture the product optimally.

CO2-The student will be able to recommend the appropriate apply and design of gating systems , forming processes, welding process.

CO3-Based on the type of different products the students will select and apply the required forming process.

CO4-Select and apply required tools, fluids, materials and analyze the cutting forces, tool life also summarize the effect of cutting parameters.

Question paper pattern for SEE:

- 1. Part A: 1 to 2 marks questions covering entire syllabus for 20 marks (compulsory).
- 2. Part B: Four units, each unit carrying 2 questions of 20 marks each.
- 3. Students need to answer 4 full questions selecting one from each unit.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

Course			Pr	ogran	nme (Dutco	mes (Pos)/I	Progra	amme	Specifi	c Outc	omes (PSO)		
Outco	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PS	PS	PS	PS
mes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	04
(COs)																
CO1	2	2	-	-	-	-	2	1	2	2	1	2	2	2	1	-
CO2	2	2	2	-	-	-	2	1	2	2	1	2	2	2	2	-
CO3	2	2	1	-	-	-	2	1	2	2	1	2	1	1	2	-
CO4	2	2	2	-	-	-	2	1	2	2	1	2	2	2	1	-
							High ·	-3, Me	edium	– 2, Lo	ow - 1					

21UME 304 L	III Semester	01 - Credits
L:T:P - 0-0-2	MANUFACTURING TECHNOLOGY	CIE Marks : 50
Total Hours/Week: 2	LAB-I	SEE Marks : 50

Part – A	
Preparation of three models on lathe involving Plain turning, Taper turning, Step turnicutting, Facing, Knurling, Drilling, Boring, Internal Thread cutting and Eccentr Determination of gear train for thread cutting. Preparation of the process chart for the cor	ing, Thread ic turning. nponent.
PART - B	
Cutting of V Groove/ dovetail / Rectangular groove using Shaping and Cutting of Gear Milling Machine. Planning machine. Estimation of stroke length, Number of stroke, Estrpm, Preparation of process chart for the component.	Feeth using timation of
PART - C	
 Preparation of green sand moulds using two molding boxes kept ready for pouring 1.patterns (Single piece pattern and Split pattern) 2.Without patterns. 3. Incorporating core in the mould. (Core boxes). 4. Preparation of one casting (Aluminium or cast iron-Demonstration only) 	. Using
Question paper pattern for SEE:	
 Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE). The CIE in laboratory in classes is carried out for 50 marks (30 marks for the perforterm work) For remaining 20 marks one practical test to be conducted. The SEE practical is conducted for 50 marks two question to be set from eac (Process chart five marks + 15 marks for job) and Part B (Process chart and prog 15 marks + Virtual machining 5 marks). for 20 marks each and 10 marks Viva voce 	mance and h Part A ramming
Course Outcomes	
After completion of the lab student will be able to	
CO1: Know the various machining operations and its application	
CO3: Know the machining calculations.	

CO3: Know the machining calculations. **CO4:** Use the techniques, skills and modern engineering tools necessary for engineering practice.

Course			Prog	am	me	Out	con	nes	(POs	s)			Program Specific Outcomes (PSOs)				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	3	1	1	2	1	2	1	1	2	-	-	-	2	2	1	2	
CO2	2	3	1	2	-	1	1	-	-	-	-	-	2	2	1	1	
CO3	3	1	2	1	-	1	-	-	-	-	-	-	3	1	3	1	
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

21UME305L		02 - Credits		
L:T:P : 0 : 0: 4		CIE Ma	arks : 50	
Total Hours/Week: 04	LAD	SEE M	arks : 50	
	Part – A		xx Hrs	
Drafting				
 Dimensioning and Tolerar 	nce			
 Surface finish 				
 Conventions, abbreviation 	ns and symbols			
• Applications of GD & T in	Engineering practice			
 Sections of solids Orthographic conversion 	(Missellanaous Droblams)			
 Orthographic conversion Component drawing read 	ling 3 examples			
	PART - B		xx Hrs	
Assembly Drawing				
 Valves (Any one), Plumme 	er block			
Free hand sketching of the follow	ring (Any Two)			
Carburetor, Fuel pump, differentia	al, power transmission, couplings, screw jac	k, knuckle joir	nt	
 Question paper pattern for SEE: 1. Each laboratory subject is 2. The CIE in laboratory in cluterm work) 3. For remaining 20 marks on The SEE practical is conducted part B 20 Marks and 10 m 	evaluated for 100 marks (50 CIE and 50 SEE asses is carried out for 50 marks (30 marks f ne practical test to be conducted ucted for 50 marks two question to be set arks Viva voce.	:). for the perfor : from each P	mance and art A 20	
References: 1. Machine Drawing, By K.F	R.GOPALAKRISHNA (Revised Syllabus 2003-2	2004)		
Course Outcomes**				
After completion of the course	e student will be able to			
CO1: Proficient in using engineering	ng drawing instruments, materials and tech	niques		
CO2: Draw freehand sketches, ort	hographic projections, and use of surface te	exture symbol	s and	
dimensioning styles in the d	rawing			
CO3: Create drawings to industria	I standard and draw the assembly from the	individual par	rt drawing	
CO4: Familiar with freehand sk	etching, conventions used in engineering d	rawing, geon	netrical	
dimensioning and tolerand	ce etc			
* Books to be listed as per the ** Each CO to be written with	format with decreasing level of coverage of proper action word and should be assessa	of syllabus ble and quan	tifiable	

Course Outcomes			Ρ	rog	ram	me	Out	tcon	nes	(POs)			Program Specific Outcomes (PSOs)					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4		
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO2	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-	-		
CO3	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-	-		
CO4	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-	-		

21U	ME XXX X
L:T:	P:0:0:4

Total Hours/Week: 04

Course Outcomes

- 1. Explore career alternatives prior to graduation
- 2. Integrate theory and practice
- 3. Develop communication, interpersonal and other critical skills in the job interview process
- 4. Learn to appreciate work and its function in the economy.
- 5. Build a record of work experience.

Content of Activities:

- 1. Learning at Departmental Lab/Tinkering Lab/ Institutional workshop.
- 2. Learning MS Word, Excel, Microsoft equations, MS drawing tools, MS Power point, etc.
- 3. Essay competitions: Both in Kannada and English on technical topics already studied.
- 4. Survey and study of published literature on the assigned topic: Technical paper survey, preparation of synopsis. Exposure to technical paper publications.
- 5. Athletics and Sports.
- 6. Solar energy connected activities that help common man.
- 7. Cultural activities: Dram, Dance.
- 8. Industrial safety, fire safety, electrical safety, chemical process safety, food safety, etc.
- 9. Industrial visits/Small Scale Industries/Factories/Cottage Industries/substation visit/short project tour, etc., and submission of report.

Evaluation:

Student's Diary

The main purpose of writing daily diary is to cultivate the habit of documenting and to encourage the students to search for details.

The students shall record in the daily training diary the day to day account of the observations, impressions, information gathered and suggestions given, if any, and activities carried out.

It should contain the sketches and drawings related to the observations made by the students.

The daily training diary should be signed after every day or at least twice a week by the Faculty/ in charge of the section (external expert) where the student has been working.

Student's Diary should be submitted by the students along with attendance record. It shall be evaluated on the basis of the following criteria:

- 1. Regularity in the maintenance of the diary.
- 2. Adequacy and quality of information recorded.
- 3. Drawings, sketches and data recorded.
- 4. Thought process and recording techniques used.
- **5.** Organization of the information

Internship report:

After completion of Internship, the student shall prepare, with daily diary as reference, a comprehensive report in consultation with the mentor/s to indicate what he has observed and learnt in the training period along with the internship outcomes. The training report should be signed by the mentor.

The Internship report shall be evaluated on the basis of following criteria and/or other relevant criteria pertaining to the activity completed.

- 1. Originality.
- 2. Adequacy and purposeful write-up.
- 3. Organization, format, drawings, sketches, style, language etc.
- 4. Practical applications, relationships with basic theory and concepts taught in the appropriate course.
- 5. Variety and relevance of learning experience.

Assessment Rubrics:

Proposed Document as Evidence:

- 1. Students dairy
- 2. Internship report along with the certificate issued, if any.

21UME 307 L	
L:T:P : 0 : 0: 2	,

Total Hours/Week: 02

Course Outcomes

By the end of course with aid of design data handbook students shall be able to,

- 1. Understand syntax and semantics of Python programming structure
- 2. Demonstrate the use of strings, files, lists, dictionaries, set and tuple in simple applications.
- 3. Write simple applications using regular expressions, files, dictionaries etc.
- 4. Analyze the given problem and select appropriate data types and modules to develop the solution..

	List of Programs	20 Hrs
1.	Check given number is divisible by seven or not	
2.	Check a given number is positive, negative or zero is not	
3.	Accept three marks find the percentage of three marks and print the grade obtained	ed by
	student. Grade is assigned as A grade for marks>=80, B grade for marks>=60, C gr	ade for
	marks>=40 otherwise D grade	
4.	Find smallest of four numbers accept numbers from keyboard	
5.	Read string from keyboard if it is alphabetic then check is it in uppercase if not con	vert it to
6	Check the x and y coordinates lies on which guadrant or axis or on origin	
0. 7	Find the roots of a quadratic equation $ax^2+bx+c=0$	
7. 8	Count the number of vowels and consonant in the given input string	
9. 9	Check given number is nrime or composite	
10	Check given number is palindrome or not	
11	Generate multiplication table between m to n. Read m and n from keyboard	
12	Generate all prime numbers between n to m excluding those prime that end with o	ligit 3. Use
	while with else and continue statement	0
13	. Generate the first n terms of the Fibonacci series	
14	. Print alphabet pattern 'T' and 'U'	
Expect	ed Output:	
T patte	ern	

*		
*		
*		
*		
*		
*		
Z patte	rn	
*****	**	
*		
*		

* ****** 16. Print the pattern 1 12 123 1234 17. Check given number is Armstrong number or not 18. Evaluate the following sine series $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$ 19. Evaluate the following cosine series $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$ 20. Find sum of the numbers and odd and even count between the limit n and m **Reference Books:** 1. Learning Python-B Nagesh Rao Python -Cyberplus Publication-1 edition 17 May 2017 2. Core Python Applications Programming-Wesley J. Chun-Pearson Education India, -Third Edition, 2015. 3. Introduction to Python Programming-Gowrishankar S. Veena A.-CRC Press Taylor & Francis Group-1st Edition 2019 4. Python Programming using problem solving approach-Reema Thareja-Oxford university press,-1st Edition 2017 5. Python for Everybody: Exploring Data Using Python 3-Charles R. Severance-CreateSpace Independent Publishing Platform-1st Edition, 2016. 6. Python Programming -Michael Urban and Joel Murach-Mike Murach Elizabeth Drake-1st Edition,2016 **Question paper pattern for SEE:**

- 1. Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE).
- 2. The CIE in laboratory in classes is carried out for 50 marks (30 marks for the performance and term work)
- 3. For remaining 20 marks one practical test to be conducted.

The SEE practical is conducted for 50 marks two question to be set from each Part A (Process chart five marks + 15 marks for job) and Part B (Process chart and programming 15 marks + Virtual machining 5 marks). for 20 marks each and 10 marks Viva voce.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course Outcomes		Programme Outcomes (POs)										Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	-	-	-	3	-	-	-	-	-	-	-	1	1	-	-
CO2	1	-	-	-	3	-	-	-	-	-	-	-	1	1	-	-
CO3	1	-	-	-	3	-	-	-	-	-	-	-	1	1	-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

L: T: P: 3-0-0MATERIALS SCIENCE AND METALLURGYCIE Marks : 50Total Hours : 40SEE Marks : 50	21UME 401 C		03 - Credits
Total Hours : 40 SEE Marks : 50	L: T: P: 3-0-0	MATERIALS SCIENCE AND METALLURGY	CIE Marks : 50
	Total Hours : 40		SEE Marks : 50

UNIT – I	10 Hrs
MECHANICAL TESTING OF MATERIALS: Hardness – Rockwell, Vickers and Brinell hardness	testing.
Fatigue: fracture tests, S-N curves, factors affecting fatigue life and protection methods.	Creep: the
creep curves, mechanism of creep, creep resistant materials. Stages in cup and cone fractu	re.
SOLID SOLUTIONS: Types, rules of governing the formation of solid solutions. Phase diag	rams: basic
terms, Gibbs phase rules, cooling curves, construction of phase diagrams, interp	retation of
equilibrium diagrams (use of tie line and Lever rule), types of phase diagrams (Eutec	tic systems,
peritectic, eutectoid, peritectoid reactions).	
UNIT – II	10 Hrs
EQUILIBRIUM PHASE DIAGRAMS: Iron – Iron carbide equilibrium phase diagram, phases system, invariant reactions, microstructure of slowly cooled steels, effect of alloying elem Fe3C diagram. The TTT diagrams, drawing of TTT diagrams, TTT diagrams for eutectoid steel alloying elements.	ents on Fe- lents on Fe- els, effect of
HEAT TREATMENT: Annealing, normalizing, hardening, hardenability, Jominy end-quench t	est.
ENGINEERING ALLOYS: Properties, composition and uses of low carbon, mild medium	n and high
carbon steels, cast Irons, gray CI, white CI, maileable CI, SG Iron.	10.11
UNIT - III STANDARDS OF MEASUREMENT: Definition and Objectives of metrology. Standards	10 Hrs
International prototype meter Imperial standard yard subdivision of standards line	and end
standard, calibration of end bars (Numerical), Slip gauges, Wringing phenomena.	
SYSTEM OF LIMITS, FITS, TOLERANCES AND GAUGING: Definition of tolerance, Spec	ification in
assembly, Principle of inter changeability and selective assembly limits of size, Indian	standards,
concept of limits of size and tolerances, compound tolerances accumulation of tolerances	, definition
of fits, types of fits and their designation (IS 919 -1963), geometrical tolerance, μ	ositional -
tolerances, hole basis system, shaft basis of system. Numericals.	
UNIT IV	10 Hrs
MEASUREMENTS AND MEASUREMENT SYSTEMS: Definition, Significance of me	asurement,
generalized measurement system, definitions and concept of accuracy, precision,	calibration,
threshold, sensitivity, hystersis, repeatability, linearity, loading effect. Transducers, Pi	rimary and
Secondary transducers, Electrical and Mechanical transducers.	
INTERMEDIATE MODIFYING AND TERMINATING DEVICES: Mechanical systems, inherent	problems.
Electrical intermediate modifying devices: ballast circuit and vaccum tube amplifiers.	· ,
Cathode Ray Oscilloscope, Oscillographs, X-Y Plotters.	
MEASUDEMENT OF TODOLLE DESSLIDE AND TEMPEDATURE. Dropy broke, budgeville due	amomatar
Principle, use of elastic members, thermal Conductivity Gauge: Pirani Gauge.	amometer.

Pyrometer, Optical Pyrometer

Reference Books:

- 1. "Introduction to Material Science for Engineering", 6th edition James F. Shackel ford. Pearson, Prentice Hall, New Jersy, 2006.
- 2. "Physical Metallurgy, Principles & Practices", V Raghavan.PHI 2nd Edition 2006, New Delhi.
- 3. "Foundation of Material Science and Engineering", Smith, 3rd Edition McGraw Hill, 1997.

Course Outcomes**

After completion of the course student will be able to

- **CO1:** Calculate atomic packing factor of different crystal structures and determine the hardness, true stress and true strain.
- **CO2:** Solve problems on phase diagrams and interpret the phase diagrams. Analyze various modes of failures in materials.

CO3: Synthesize heat treated ferrous metal by annealing and normalising and illustrate iron – iron carbide equilibrium and non equilibrium phase diagrams.

CO4: Illustrate the composition and properties of various engineering alloys, smart materials, composite materials and the process of corrosion, its causes and preventive methods.

Course Outcomes		Programme Outcomes (POs)											Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	-	1	-	-	-	-	-	1	-	1	2	1	-	1
CO2	2	2	-	2	-	-	-	-	-	1	-	1	2	2	-	2
CO3	-		1	2	-	-	-	-	-	1	-	1	-	-	1	2
CO4	-	1	1		-	-	-	-	-	1	-	1	-	1	1	-

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

21UME 402 C	N/ Comparter	03 - Credits (3 : 0 : 0)
Hrs./Week : 03		CIE Marks : 50
Total Hours : 40	MANOFACTORING TECHNOLOGY-II	SEE Marks : 100

UNIT – I	10 Hrs
NC and CNC Machines: Fundamentals of NC Technology: Basic Components of NC System, NC Co-Ordinate system Motion control system,	,
Computer Numerical Control (CNC) :Features of CNC, The machine control units of CNC, CNDNC: Direct numerical control, Distributed numerical control.	NC Software,
Engineering Analysis of NC positioning System: Open Loop positioning system, Closed Loc systems, Precision in NC Positioning.	p Positionin
NC Part programming: NC Coding system (EIA/ISO Format), Manual and Computer assisted Part programming.	
APT programming, Basic Principles of APT Programming language. Applications of NC : Machine tool application, other NC applications. Programming Exam	ples.
UNIT – II	10 Hrs
advantages and disadvantages of rapid prototyping. Basics principles of Stereolithograp Selective Laser sintering, Fused deposition modelling, Laminated object manufacturing.	P industry, hy systems
UNIT - III	10 Hrs
 Group Technology Group Technology: History of group technology, Role of GT in CAD/CAM integration, Parclassification and coding, DCLASS, MICLASS and OPITZ coding systems, Facility design Benefits of GT, Cellular manufacturing. Agile Manufacturing: Definition, business need, conceptual frame work, characteristics, generic features. Devel Manufacturing(Enterprise, Strategies, integration of organization, workforce and freference models, examples.). 	t families - using GT, oping Agile echnology,
 CAPP: Introduction of Computer Aided Process Planning (CAPP), Variant & Generative method advantages of CAPP. [Only theory]. TPS: Introduction & History of the Toyota Production System, Goals of the Toyota Producti TPS Model Overview, Focus Areas of TPS, Eliminating Waste, Quality, Cost, Productivit Morale, Jidoka, Standardization, Just in Time, Pull Production, Kanban, Flow Production. 	ls of CAPP,
Reliability.	ion System, y, Safety & Equipment

Flexible Manufacturing System

What is FMS, FMS components, FMS applications and benefits, FMS planning and implementation issues, Quantitative analysis of FMS, Numericals.

Reference Books:

- 1. Automation, Production system, And Computer Integrated Manufacturing Mikell P. Grover Prentice hall of India Pvt. Ltd Second,2006
- 2. Rapid Prototyping, Principles and Application C K Chau, K F Leong and C S LIM World Scientific Publishing Co. Pte. Ltd. Second Edition, 2003
- **3.** Group Technology: Inyong Ham, Katsundo Hitomi, Springer Science & Business Media, 2012 Business & Economics 208 pages.
- 4. Flexible Manufacturing System H. K. Shivanand New Age International, 2006
- **5.** Rapid Prototyping Dr. M. Adithan Atlantic Publishers and Distributors Pvt Ltd Edition (1 January 2015).
- **6.** CAD/CAM/CIM P Radhakrishna,S Subramanian, V. Raju New Age International Publisher Third Edition,
- 7. Mastering CAD/CAM, Ibrahim zeid Tata McGraw Hill Second Edition 2009

Course Outcomes:

At the end of the course the student will be able to:

CO-1 Understand and apply the knowledge of NC Technology, CNC, DNC, NC Part programming, Engineering Analysis of NC positioning System, Applications of NC for simple required products and mechanical models .

CO-2 Understand and apply the knowledge of Rapid Prototyping, basic principle of rapid prototyping processes, Stereolithography systems Selective Laser sintering, Fused deposition modelling, Laminated object manufacturing, applications and for simple required products and mechanical models.

CO-3 Understand and apply the knowledge of Group Technology in CAD/CAM integration, Facility design using GT, Agile Manufacturing(Enterprise, Strategies, integration of organization, workforce and technology, reference models, examples.), Computer Aided Process Planning (CAPP), TPS(Toyota Production System) for simple required products and mechanical models.

CO-4 Understand and apply the knowledge of Flexible Manufacturing System, FMS planning and implementation issues, Quantitative analysis of FMS for simple required products and mechanical models .

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

Course		Programme Outcomes (Pos)/Programme Specific Outcomes (PSO)														
Outco	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PO	PO	PS	PS	PS	PS
mes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	04
(COs)																
1	2	2	-	-	-	-	2	1	2	2	1	2	2	2	1	-
2	2	2	2	-	-	-	2	1	2	2	1	2	2	2	2	-
3	2	2	1	-	-	-	2	1	2	2	1	2	1	1	2	-
4	2	2	2	-	-	-	2	1	2	2	1	2	2	2	1	-
		High -3, Medium – 2, Low - 1														

21UME403C			03 - Credits				
L:T:P 2:2:0	FLUID MECHANICS	CIE N	Marks : 50				
Total Hours/Week : 04		SEE M	larks : 100				
UNIT – I 13 Hrs							
Properties of Fluids: Introduction, properties of fluids, viscosity, thermodynamic properties,							
Surface tension and Capillarity, Vapour pressure and Cavitation, Numerical problems.							
Fluid Statics: Fluid pressure at a point, Pascal's law, Pressure variation in a static fluid,							

Absolute, gauge, atmospheric and vacuum pressures, Simple manometers, differential manometers, Total pressure and center of pressure, Vertical plane surface submerged in a liquid, Horizontal plane surface submerged in a liquid, Inclined plane surface submerged in a liquid, Curved surface submerged in a liquid, Buoyancy, center of buoyancy, metacenter and metacentric height, Conditions of equilibrium for floating and submerged bodies, Numerical problems.

Fluid Kinematics: Introduction, Types of fluid flow, Continuity equation, continuity equation in three dimensions (Cartesian co-ordinate system only), Velocity and acceleration, Velocity potential function and stream function, Numerical problems.

13 Hrs

UNIT – II

Dimensional Analysis: Introduction, Derived quantities, Dimensions of physical quantities, Dimensional homogeneity, Buckingham's ∏ theorem, Raleigh's method, Dimensionless numbers, Similitude and types of similitude, Numerical problems.

UNIT – III									
Fluid Dynamics:	Introduction, Equations of motion, Euler's equation	of motion,							
Bernoulli's equation	from Euler's equation, Bernoulli's equation for real fluids	, Numerical							
problems.									

Fluid flow measurements: Introduction, Venturimeter, Orifice meter and Pitot tube, Discharge over rectangular and triangular notches, Numerical problems.

Flow through pipes: Frictional loss in pipe flow, Darcy- Equation for loss of head due to friction in pipes, Chezy's equation for loss of head due to friction in pipes, Hydraulic gradient and total energy line, Minor loses in pipes, Sudden enlargement, Sudden contraction, Obstruction, Bend, Elbow, Numerical problems.

UNIT – IV	13 Hrs
Laminar flow and viscous effects: Reynold's number, Critical Reynold's number, I	Laminar flow
through circular pipe-Hagen Poiseulle's equation, Laminar flow between paralle	el stationery
plates, Numerical problems.	
Flow most immediate Data Life Europeian for life and data. December 1	

Flow past immersed bodies: Drag, Lift, Expression for lift and drag, Pressure drag, Friction drag, Boundary layer concept, Displacement thickness, Momentum thickness and energy thickness, Numerical problems.

Introduction to compressible flow: Velocity of sound in a fluid, Velocity of sound in terms of Bulk modules, Velocity of sound for isothermal process, Velocity of sound for adiabatic process.

Mach number, Subsonic, Sonic and Supersonic flows, Propagation of disturbance for different

Mach numbers, Mach cone, Stagnation properties, Stagnation Pressure, Stagnation temperature, Area velocity relationship for compressible flow, Numerical problems

Reference Books:

- 1. Fluid Mechanics by Dr. Bansal.R.K, Lakshmi Publications, 2004
- 2. Fluid Mechanics (SI Units), Yunus A. Cingel John M. Oimbala. Tata McGraw-Hill, 2006
- 3. Fluid Mechanics and hydraulics, Dr. Jagadishlal: Metropolitan Book Co-Ltd., 1997.
- 4. Fluid Mechanics by OijushK.Kundu, IramCochen, Elsevier 3rd Edition. 2005.
- 5. Fluid Mechanics by John F.Douglas, Janul and M.Gasiosek and john A. Swaffield, Pearson Education Asia, 5th edition., 2006.
- 6. Fluid Mechanics and Fluid Power Engineering," Kumar.D.S Kataria and Sons.,2004.
- 7. Essential Computational Fluid Dynamics by Oleg ZiaanovPub: Jhon Wiley.

1000 Solved problems in Fluid Mechanics by Subramanya K, TMH, 2006.

Course Outcomes:

After completion of the course students shall be able to

CO1: Classify the types of fluids and calculate shear stress, pressure intensity, total pressure, centre of pressure, metacentre and metacentric height.

CO2: Differentiate between the types of fluid flow, similitude and calculate the velocity and acceleration aspects in a fluid flow applying continuity equation and dimensional analysis.
 CO3: Evaluate the velocity as well as theoretical discharge using flow meters and losses in a pipes and conduits by applying Bernoulli's, Euler's, Darcy-Weisbach and Chezy's equations.
 CO4: Differentiate between the viscous and compressible flows and evaluate the pressure loss, lift and drag and velocity of sound in a fluid flow.

Course	Programme Outcomes (Pos)														Program Specific Outcomes (PSOs)					
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4				
CO1	2	1	-	1	-	-	-	-	1	-	-	1	1	1	-	-				
CO2	2	1	-	1	-	-	-	-	1	-	-	1	1	1	-	-				
CO3	2	1	-	1	-	-	-	-	1	-	-	1	1	1	-	-				
CO4	2	1	-	1	-	-	-	-	1	-	-	1	1	1	-	-				

21UME404C		03 - Credits
L:T:P - 2 : 2: 0		CIE Marks : 50
Total Hours/Week: 4	THEORY OF MACHINES	SEE Marks : 50

Г

Introduction: DEFINITIONS: Link or element kinematic pairs, degrees of freedo	101113								
Introduction. Definitions. Link of element, kinematic pairs, degrees of needo	m, Grubler's								
criterion (without derivation), Kinematic chain, Mechanism, structure, Mobility of	Mechanism,								
Inversion, Machine. kinematic chains and inversions: Inversions of Four bar chain;	Single slider								
crank chain and Double slider crank chain.									
MECHANISMS: Quick return motion mechanisms -Drag link mechanism,	Whitworth								
mechanism and Crank and slotted lever Mechanism. Straight line motion me	echanisms –								
Peaucellier's mechanism and Robert's mechanism. Intermittent Motion mechanisr	ms – Geneva								
mechanism and Ratchet and Pawl mechanism. Toggle mechanism, Pantograph	n, Ackerman								
steering gear mechanism.	,								
UNIT – II	10 Hrs								
STATIC FORCE ANALYSIS: Introduction: Static Equilibrium, Equilibrium of Two and	Three Force								
Members. Members with Two Forces and Torque. Free Body Diagrams. Princip	ole of Virtual								
Work, Static Force Analysis of Four Bar Mechanism and Slider-Crank Mechanis	sm with and								
without friction									
BALANCING OF ROTATING MASS: Static and Dynamic Balancing, Balancing of Sin	gle Rotating								
Mass by Balancing Masses in Same plane and in Different planes. Balancing of Seve	eral Rotating								
Wasses by Balancing Wasses in Same plane and in Different planes. Balancing Of Several Kolaling									
	10 Hrs								
GOVERNORS: Types of Governors: Force Analysis of Porter and Hartnell Governors	Controlling								
Force Stability Sensitiveness Isochronism Effort and Power	. controlling								
GVROSCOPE: Vectorial Representation of Angular Motion Gyroscopic Count	Force, Stability, Sensitiveness, Isochronism, Effort and Power								
GYROSCOPE: Vectorial Representation of Angular Motion, Gyroscopic Couple. Effect of									
Gyroscopic Couple on Shin Plane Disc Aeronlane Stability of Two Wheeler	e. Effect of								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler	e. Effect of rs and Four								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers.	e. Effect of rs and Four								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers.	e. Effect of rs and Four 10 Hrs								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti	e. Effect of rs and Four 10 Hrs on, Epicyclic								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains.								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains.	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains.								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and follower, Disc cam with oscillating roller follower, Follower motions including SH	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and follower, Disc cam with oscillating roller follower, Follower motions including SH velocity, uniform acceleration and retardation and Cycloidal motion.	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and follower, Disc cam with oscillating roller follower, Follower motions including SH velocity, uniform acceleration and retardation and Cycloidal motion. Reference Bok:	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and follower, Disc cam with oscillating roller follower, Follower motions including SH velocity, uniform acceleration and retardation and Cycloidal motion. Reference Bok: 1. Theory of Machines, Rattan S.S. McGraw-Hill Education, 2 nd edition, 2005.	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and follower, Disc cam with oscillating roller follower, Follower motions including SH velocity, uniform acceleration and retardation and Cycloidal motion. Reference Bok: 1. Theory of Machines, Rattan S.S. McGraw-Hill Education, 2 nd edition, 2005. 2. Theory of Machines, Sadhu Singh Pearson Education (Singapore) Pvt. Ltd., Indian Br	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform								
Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and follower, Disc cam with oscillating roller follower, Follower motions including SH velocity, uniform acceleration and retardation and Cycloidal motion. Reference Bok: 1. Theory of Machines, Rattan S.S. McGraw-Hill Education, 2 nd edition, 2005. 2. Theory of Machines, Sadhu Singh Pearson Education (Singapore) Pvt. Ltd., Indian Br Delhi, 2 nd edition, 2006.	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform								
 Grinoscoric Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller at follower, Disc cam with oscillating roller follower, Follower motions including SH velocity, uniform acceleration and retardation and Cycloidal motion. Reference Bok: Theory of Machines, Rattan S.S. McGraw-Hill Education, 2ndedition, 2005. Theory of Machines, Sadhu Singh Pearson Education (Singapore) Pvt. Ltd., Indian Br Delhi, 2ndedition, 2006. Theory of Machines & Mechanisms, Shigley. J. V. and Uickers, J. OXFORDUniversed 	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform ranch, New sity press.J,								
 Grinoscoric Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and follower, Disc cam with oscillating roller follower, Follower motions including SH velocity, uniform acceleration and retardation and Cycloidal motion. Reference Bok: Theory of Machines, Rattan S.S. McGraw-Hill Education, 2nd edition, 2005. Theory of Machines, Sadhu Singh Pearson Education (Singapore) Pvt. Ltd., Indian Br Delhi, 2nd edition, 2006. Theory of Machines & Mechanisms, Shigley. J. V. and Uickers, J. OXFORDUnivers 3rd edition 2004 	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform ranch, New sity press.J,								
 Gritoscoric: Vectorial Representation of Angular Wotton, Gyroscopic Couple Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller and follower, Disc cam with oscillating roller follower, Follower motions including Shvelocity, uniform acceleration and retardation and Cycloidal motion. Reference Bok: Theory of Machines, Rattan S.S. McGraw-Hill Education, 2nd edition, 2005. Theory of Machines & Mechanisms, Shigley. J. V. and Uickers, J. OXFORDUnivers 3rd edition 2004 Theory of Machines, Robert L. Norton, McGraw-Hill Higher Education, 3rd edition 	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform ranch, New sity press.J, 2006								
 Gritoscoric: Vectorial Representation of Angular Wotton, Gyroscopic Couple Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller at follower, Disc cam with oscillating roller follower, Follower motions including SH velocity, uniform acceleration and retardation and Cycloidal motion. Reference Bok: Theory of Machines, Rattan S.S. McGraw-Hill Education, 2nd edition, 2005. Theory of Machines & Mechanisms, Shigley. J. V. and Uickers, J. OXFORDUnivers 3rd edition 2004 Theory of Machines, Robert L. Norton, McGraw-Hill Higher Education, 3rd edition 	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform ranch, New sity press.J, 2006								
 Gritoscor L. Vectorial Representation of Angular Motion, Gyroscopic Couple Gyroscopic Couple on Ship, Plane Disc, Aeroplane, Stability of Two Wheeler Wheelers. UNIT – IV GEAR TRAINS: Simple gear trains, Compound gear trains for large speed reducti gear trains, Algebraic and tabular methods of finding velocity ratio of epicyclic Tooth load and torque calculations in epicyclic gear trains. CAMS: Types of cams, Types of followers, Displacement, Velocity and Acceleration for cam profiles. Disc cam with reciprocating follower having knife -edge, roller at follower, Disc cam with oscillating roller follower, Follower motions including SH velocity, uniform acceleration and retardation and Cycloidal motion. Reference Bok: Theory of Machines, Rattan S.S. McGraw-Hill Education, 2nd edition, 2005. Theory of Machines & Mechanisms, Shigley. J. V. and Uickers, J. OXFORDUniver: 3rd edition 2004 Theory of Machines, Robert L. Norton, McGraw-Hill Higher Education, 3rd edition 	e. Effect of rs and Four 10 Hrs on, Epicyclic gear trains. time curves nd flat-faced IM, Uniform ranch, New sity press.J, 2006								

CO2: Apply the concepts of forces acting on the mechanisms.

CO3: Analyze the effect of a gyroscopic couple on Ship, Aeroplane and an Automobile. **CO4:** Analyze the concepts of gear trains and construct cam profile for the specific follower motion.

Question paper pattern for SEE:

- 1. Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.
- 2. Each question should not have more than four subdivisions.
- 3. Any five full questions are to be answered choosing at least one from each unit.

Table: Matrix to describe the mapping of POs with Cos

Course			Ρ	rog	ram	me	Program Specific Outcomes (PSOs)									
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	2	2	-	1	-	-	1	-	-	-	1	2	2	-	-
CO2	2	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-
CO3	3	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-
CO4	3	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-
		High -3, Medium – 2, Low - 1														

21UME 405 L	IV Semester	01 - Credits (0 : 0 : 2)
Hrs./Week : 02	MATERIAL TESTING & INSTRUMENTATION	CIE Marks : 50
Total Hours : 20	LAB	SEE Marks : 50

Part – A Material Testing	10 Hrs							
 Brinell hardness test Vickers hardness test Tensile test Compression test Izod impact test 								
PART – B Metrology and Instrumentation	10 Hrs							
 To calibrate load cell using standard loads To calibrate LVDT using micrometer screw gauge To calibrate the micrometer screw gauge suing standard slip gauges To find the effective diameter of the screw thread by three wire method To measure the taper angle of the conical specimen using standard roller set and slip gauges 								
Scheme for Examination: One Question from Part A - 15 Marks (05 Writeup+10) One Question from Part B - 25 Marks (05 Writeup+20) Viva-Voce - 10 Marks 								
Course Outcomes**								
 CO1: Determine the tensile and compression strength of materials using UTM CO2:Determine the various mechanical properties like hardness and impact strength of the materials CO3: Calibrate various measuring instruments like LVDT micrometer screw gauge load cell CO4: Develop the ability to apply the principles in instruments and measuring techniques 								

Course			Ρ	rog	ram	me	Program Specific Outcomes (PSOs)									
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	-	-	1	-	-	-	-	-	1	1	3	2	-	-
CO2	3	2	-	-	1	-	-	-	-	-	1	1	3	2	-	-
CO3	1	1	-	-	1	-	-	-	-	-	1	1	1	1	-	_
CO4	1	1	-	-	1	-	-	-	-	-	1	1	1	1	-	-

21UME 406 L	N/ Compation	02 - Credits
L:T:P - 0 : 0: 2		CIE Marks : 50
Total Hours /Week: 2	CAIVID LAB	SEE Marks : 50

Part – A	5 Hrs
Orthographic views: Conversion of pictorial views into orthographic projections of simple machine parts with section. (Bureau of Indian Standards conventions are to be followed for the drawings) conventions. Precedence of lines.	or without Hidden line
PART - B	6 Hrs
Keys, Joints & Couplings: Parallel key, Taper key, Feather key, Gibhead key and Woodruff key. Flanged coupling and universal coupling (Hooks' Joint)	
PART - C	9 Hrs
 Assembly Modeling and Drafting (Part drawings should be given) Any four 1. Plummer block (Pedestal Bearing) 2. I.C. Engine connecting rod 3. Screw jack (Bottle type) 4. Tailstock of lathe 5. Machine vice 6. Tool Head of shaper 	
 Reference Books: 1. 'A Primer on Computer Aided Machine Drawing-2007', Published by VTU, Belgaum 2. 'Machine Drawing', N.D.Bhat& V. M. Panchal 3. 'Machine Drawing', N. Siddeshwar, P. Kanniah, V.V.S. Sastri, published by GrawHill, 2006 4. 'A Text Book of Computer Aided Machine Drawing', S. Trymbaka Murthy, CBS Provide New Delhi, 2007 5. 'Machine Drawing', K.R. Gopala Krishna, Subhash Publication. 	Tata Mc ublishers,
 Question paper pattern for SEE: Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE). The CIE in laboratory in classes is carried out for 50 marks (30 marks for the perforterm work) For remaining 20 marks one practical test to be conducted. The SEE practical is conducted for 50 marks two question to be set from eac (Process chart five marks + 15 marks for job) and Part B (Process chart and proge 15 marks + Virtual machining 5 marks). for 20 marks each and 10 marks Viva voce. 	mance and h Part A ramming
Note: There is no Theory Examination. Examination is only for CAMD Laboratory	

Laboratory Assessment:

- 1. Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE).
- 2. The CIE in laboratory in classes is carried out for 50 marks (30 marks for the performance and term work)
- 3. For remaining 20 marks one practical test to be conducted for sketching and printouts from SOLID EDGE.

The SEE practical is conducted for 50 marks of three hour duration one question to be set from Part A or Part B and one assembly question from Part C. Student has to answer all the question.Part A or Part B for 20 marks and Part C for 30 marks.

Course Outcomes

CO1: Summarize the sketching, navigational, modeling, assembly commands used in SOLID EDGE software.

CO2: Predict the conversion of pictorial views into orthographic projections of simple machine parts with or without section.

CO3: Model solid models (3D drawings) of machine parts like joints and couplings

CO4: Analyze and assemble the machine components and convert to 2D drawings in assembly or in single unit.

CO5: Employ the information prepared by industry/customer to construct functioning of the mechanical system

Course				Pro	gram	nme	Program Specific Outcomes (PSOs)									
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	-	-	-	2	-	-	-	-	-	-	1	1	-	-	1
CO2	1	-	-	-	2	-	-	-	-	-	-	1	1	-	-	1
CO3	1	-	-	-	2	-	-	-	-	-	-	1	1	-	-	1
CO4	1	-	-	-	2	-	-	-	-	-	-	1	1	-	-	1
CO5	1	-	-	-	2	-	-	-	-	-	-	1	1	-	-	1

21UME 407 C	N/ Comostor	01 - Credits		
L: T: P: 0: 0: 2		CIE Marks : 50		
Teaching Hours/ Week : 02	FUELS & IC ENGINE LAB	SEE Marks : 50		

Part – A

Individual Experiments

- 1. Determination of Flash point and Fire point using Abel / Clevland / Pensky Martins Apparatus.
- 2. Determination of Viscosity using Redwood viscometer
- 3. Determination of Viscosity using Saybolt's viscometer.
- 4. Determination of Cloud and Pour point
- 5. Determination of Carbon residue by Conradson fuel apparatus.
- 6. Determination of Density of oil/fuel.
- 7. Distillation of fuel.

PART - B

Group experiments

- 1. Performance tests on I. C. Engines, calculations of IP, BP, FP, thermal efficiencies, mechanical efficiency, volumetric efficiency, air fuel ratio, SFC, BSEC, heat balance sheet for Twin cylinder four stroke diesel engine .
- 2. Performance tests on I. C. Engines, calculations of IP, BP, FP, thermal efficiencies, mechanical efficiency, volumetric efficiency, air fuel ratio, SFC, BSEC, heat balance sheet for Single cylinder four stroke diesel engine.
- **3.** Performance tests on I. C. Engines, calculations of IP, BP, FP, thermal efficiencies, mechanical efficiency, volumetric efficiency, air fuel ratio, SFC, BSEC, heat balance sheet for four stroke petrol engine.

Scheme for Examination:

One Question from Part A - 15 Marks (05 Writeup+10) One Question from Part B - 25 Marks (05 Writeup+20) Viva-Voce - 10 Marks

Total 50 Marks

Course Outcomes:

Course	Programme Outcomes (POs)															
Outco	РО	РО	РО	PO	PO	РО	РО	РО	РО	РО	РО	PO	PS	PS	PS	PS
mes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	04
(COs)																
1	1	1	-	-	-	1	-	1	1	-	-	-	-	1	-	-
2	1	1	-	-	-	1	-	1	1	-	-	-	-	1	-	-
3	1	2	-	1	-	1	-	1	1	-	-	1	1	1	-	-
4	1	2	-	1	-	1	-	1	1	-	-	1	1	1	-	-

21UME501 C		03 - Credits								
L:T:P - 2 : 2: 0	DESIGN OF MACHINE FLEMENTS	CIE Marks : 50								
Total Hours/Week: 4		SEE Marks : 50								
	Unit - I		12 Hrs							
 Introduction Definitions: Normal, Shear, Biaxial and Triaxial Stresses, Stress Tensor, Principal Stresses Engineering Materials and their Mechanical properties, Stress-Strain diagrams, Stress Analysis, Design considerations: Codes and Standards. Design for Static strength Static loads and Factor of Safety, Theories of failure. Maximum Normal Stress Theory, Maximum Shear Stress Theory, Distortion Energy Theory Failure of Brittle Materials, Failure of Ductile Materials, Stress Concentration, Determination of Stress Concentration Factor. 										
	UNIT - II		8Hrs							
 Design for Fatigue strength Design For Fatigue Strength: Introduction- S-N Diagram, Low Cycle Fatigue, High Cycle Fatigue, Endurance Limit, Endurance Limit Factors: Size effect, Surface effect, Stress Concentration effects. Fluctuating Stresses, Goodman and Soderberg relationship, Stresses due to Combined Loading, Cumulative Fatigue Damage. Design of Threaded Fasteners: Stresses in Threaded Fasteners, Effect of Initial Tension, Design of Threaded Fasteners under Static, Dynamic and Impact loads. Design of Eccentrically loaded Bolted Joints 										
Unit - III 10 Hrs										
Design of Shafts: Torsion of Shafts, Design for strength and Rigidity with Steady loading, ASME & BIS codes for Power Transmission shafting. Shafts under Eluctuating loads and Combined loads										
	Unit - IV		12 Hrs							
Design of Springs Definitions, Types of sprin sections. Tension and comp Torsion, Belleville and Rubber	Unit - IV gs, Stresses in helical coil springs of circ ression springs, springs under fluctuating lo springs. Leaf Springs: Stresses in leaf springs	ular and non ads, Energy sto . Equalized stre	12 Hrs -circular cross ored in springs, isses,							
Design of Springs Definitions, Types of sprin sections. Tension and comp Torsion, Belleville and Rubber Design of Spur Gears: Spur Gears: Definitions, Stres Dynamic load and wear load.	Unit - IV gs, Stresses in helical coil springs of circ ression springs, springs under fluctuating lo springs. Leaf Springs: Stresses in leaf springs sses in gear tooth: Lewis equation and form	ular and non ads, Energy sto . Equalized stre n factor, Desig	12 Hrs -circular cross ored in springs, asses, n for strength,							
Design of Springs Definitions, Types of sprin sections. Tension and comp Torsion, Belleville and Rubber Design of Spur Gears: Spur Gears: Definitions, Stres Dynamic load and wear load. Reference books:	Unit - IV gs, Stresses in helical coil springs of circ ression springs, springs under fluctuating lo springs. Leaf Springs: Stresses in leaf springs sses in gear tooth: Lewis equation and form	ular and non ads, Energy sto . Equalized stre n factor, Desig	12 Hrs -circular cross ored in springs, asses, n for strength,							
Design of SpringsDefinitions, Types of sprinsections. Tension and comparisTorsion, Belleville and RubberDesign of Spur Gears:Spur Gears: Definitions, StressDynamic load and wear load.Reference books:1. V.B. Bhandari (2007),Publishing Company L2. S. C. Sharma (2002), D	Unit - IV gs, Stresses in helical coil springs of circ ression springs, springs under fluctuating lo springs. Leaf Springs: Stresses in leaf springs sses in gear tooth: Lewis equation and for Design of Machine Elements, (2nd Edition td Design of Machine Elements, PHI Learning	ular and non ads, Energy sto Equalized stre n factor, Desig n) Tata M	12 Hrs -circular cross ored in springs, asses, n for strength, cGraw Hill							
Design of SpringsDefinitions, Types of sprinsections. Tension and compariseTorsion, Belleville and RubberDesign of Spur Gears:Spur Gears: Definitions, StressDynamic load and wear load.Reference books:1. V.B. Bhandari (2007),Publishing Company L2. S. C. Sharma (2002), D3. Robert L. Norton (2002)	Unit - IV gs, Stresses in helical coil springs of circ ression springs, springs under fluctuating lo springs. Leaf Springs: Stresses in leaf springs sses in gear tooth: Lewis equation and for Design of Machine Elements, (2nd Edition td Design of Machine Elements, PHI Learning (1) Machine Design, Pearson Education A	ular and non ads, Energy sto Equalized stre n factor, Desig n) Tata M	12 Hrs -circular cross ored in springs, isses, n for strength, Graw Hill							
Design of Springs Definitions, Types of sprin sections. Tension and comparise Torsion, Belleville and Rubber Design of Spur Gears: Spur Gears: Definitions, Stress Dynamic load and wear load. Reference books: 1. V.B. Bhandari (2007), Publishing Company L 2. S. C. Sharma (2002), D 3. Robert L. Norton (2000) 4. M. F. Spotts, T. E. Sho Education	Unit - IV gs, Stresses in helical coil springs of circ ression springs, springs under fluctuating lo springs. Leaf Springs: Stresses in leaf springs sses in gear tooth: Lewis equation and for Design of Machine Elements, (2nd Edition td Design of Machine Elements, PHI Learning 1) Machine Design, Pearson Education A up, L. E. Hornberger, (2006) Design of M	ular and non ads, Energy sto Equalized stre n factor, Desig n) Tata M Pvt. Ltd sia lachine Eleme	12 Hrs -circular cross ored in springs, asses, n for strength, cGraw Hill							

Design (3rd Edition), Wiley India Pvt. Ltd., New Delhi

6. Joseph E Shigley and Charles R. Mischke (2003), Mechanical Engineering Design (6th Edition). McGraw Hill International edition

Course Outcomes:

At the end of the course the student should be able to:

- **CO 1.** Summarize the terminologies and preliminary concepts related to normal, shear, biaxial, tri axial and principal stresses.
- **CO 2.** Apply the concepts of stress analysis, theories of failure and material science to select commonly used machine components under different condition of failure.
- **CO 3.** Design the shafts subject to combined static and dynamic load failures
- **CO 4.** Design the springs, gears by identifying the failure modes

Course	Programme Outcomes (POs)												F	Program Specific Outcomes (PSOs)			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	1	1	2	-	1	-	-	1	-	-	-	1	2	2	-	-	
CO2	2	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-	
CO3	3	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-	
CO4	3	2	3	-	1	-	-	1	-	-	-	1	2	2	-	-	
21UME 502 C		03 - Credits															
--	-------------------------------	----------------															
L:T:P - 2 _L : 2 _T : 0 _P	ENERGY CONVERSION ENGINEERING	CIE Marks : 50															
Total Hours/Week: 04		SEE Marks : 50															

Unit - I	10 Hrs									
Introduction:										
Definition of turbomachine, Parts of a turbo machine, Comparison with positive displacement machine, Classification of turbomachines, Application of dimensional analysis to turbomachines and their physical significance, specific speed for power absorbing and power developing machines, Numerical problems on dimensional analysis and model studies. Energy Transfer in Turbomachines: Euler turbine equation, Alternate form of Euler turbine equation, Components of energy transfer, Degree of reaction, General analysis of a turbo machine, Effect of blade discharge angle on energy transfer and degree of reaction, General analysis of turbines (axial flow machines), Utilization factor, Relation between utilization factor and degree of reaction, Condition for maximum energy transfer,										
Numerical problems on above topics										
UNIT - II	10 Hrs									
General analysis of power absorbing turbomachines: General analysis of centrifugal pumps and compressors, Effect of blade discharge angle, Analysis on performance, Theoretical head capacity relationship, Centrifugal machines stage parameters, Work done, Power, Stage pressure rise, Degree of reaction, Numerical problems on above topics. Centrifugal Working principle, Main parts of a centrifugal pump, Classification, Head, Static head, Manometric head, Pump Efficiencies, Manometric, Mechanical, Hydraulic, Volumetric and Overall efficiency; Work done by the pump, Pressure rise in a pump, Minimum starting speed, Multistage pumps; Cavitation,										
Unit - III	10 Hrs									
Steam and Gas Turbines:Impulse staging and need for compounding, Compounding, Velocity, Pressure, Velocity a compounding, Impulse turbine, Performance parameters, Effects of friction and blade ang efficiency, Condition for maximum efficiency, Maximum efficiency and work done problems on above topics.Multistage impulse turbine (two stage): Work done, Blade efficiency, Condition for maximum for maximum efficiency, Maximum blade efficiency work done, Maximum utilization factor with equiangular blades, Numerical problems on a Reaction turbines:	and pressure gles on blade , Numerical y, Maximum bove topics.									

Degree of reaction, Condition for maximum efficiency (without carry over efficiency), Maximum efficiency, Maximum work done, Utilization for factor, Condition for maximum utilization factor, Maximum utilization factor, Blade design parameters, Numerical problems on above topics.

					Ur	nit -	IV								10	Irs
Hydraulic Turbine:																
Unit quantities, Terminology,Pelton Wheel, Velocity triangle, Power developed, Hydraulic efficiency, Condition for maximum hydraulic efficiency, Maximum hydraulic efficiency, Turbine efficiency, Hydraulic, Mechanical, Volumetric and Overall efficiency, important design parameters. Numerical problems on above topics. Francis and Kaplan turbines:																
Velocity triangle, Runner shapes for different blade speeds (blade angles), Design parameters. Draft																
tube and types draft tubes, functions of a draft tube. Efficiency of a draft tube. Kaplan and Propeller											er					
turbines, Velocity triangles, Design parameters, Numerical problems on above topics.																
 Reference Books: 1. Principles of Turbon 2. An Introduction to e Prasad, New Age In 3. Turbines, Compress 4. Gas Turbine Theory, Edition, 1998. 5. Gas Turbines, V.Gan 6. A Treatise on Turbon Limited, 2002. 7. Text book of Turbon Davangere, Karnata 	nach ener tern ors a , H.C mesh mac mac aka.	iner gy C atio and Cohe an, 1 Chin	ry, D onve nal F Fans n, G Fata es, G s, By	.G.S ersic oubl 5, S.N FC R Mc 5.Go	hepl on - \ ishe VI.Ya Roge Grav pala	here Volu rs, 1 hya rs ar w Hi ksril	ed, T me 977, , Tat nd H II, 2 ^r hsna	he N III – IH S IH S a anc	Ласт Turk cGra arav itior itior d D.	nillan oo ma aw Hil vanam n, 200 Prithiv d A.M	Comp chine I Com uttoc 2. viraj, S . Naga	pany, ry, A. pany p, Tho Scitec araj, N	Newyor Kadamt ,2 nd Edit mson Pr h Public M.M.Pul	k, 1964 bi and M tion, 200 ress (Ind rations (plishers,	1anohar D2. lia) Ltd. India) P'	4 th VT.,
After completion of th	ne co	ours	e sti	uder	nt wi	ill be	e ab	le to)							
 CO1: Understanding o types of rotating machines. CO2: Develop a govern 	f bas mac	sics chin equ	of Tu es ai atio	urbo nd d n fo	Ma iscu r rot	chin ss th atin	es a ne im g ma	nd t npor	heir tano nery	funct ce of c and A	ioninį limen \pply	g and sionle the ei	selectio ess num nergy go	n. Ident bers in t overning	ify vario urbo g equatio	on
to analyze energ	y tra	insfe	er in	pov	ver p	prod	ucin	g tu	rbor	nachi	nes.					
nower absorbing	orino o tur	.ipie hon	or c nach	per ine	d(l0l (Cen	n OT htrifi	pum	ips a mac	ind hine	Appiy ss)	r the k	nowl	euge to	anaiyze	the	
Co4: Understand the r	oring	iple	of c	omr	oun	dine	z and	d an	alvz	e perf	orma	nce ar	nd ener	gy trans	fer in	
impulse and reac	tion	stea	am t	urbi	nes.	-0			, =						-	
Co5: Understand the f	unct	ioni	ng o	of hy	drau	ılic t	urbi	nes	and	analy	ze the	e perf	ormanc	e of the	hydrau	ılic
turbines (Pelton,	Frar	ncis a	and	Kapl	lan v	vate	r tu	bine	es)							
* Books to be list	ed a	s pe	er th	e fo	rma	t wi	th do	ecre	asin	g leve	el of c	overa	ge of sy	llabus		
** Each CO to be	writ	ten	wit	n pro	oper	act	ion	wor	d an	a sho	uid be	e asse	ssable a	and qua	ntifiable	e ic
Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs)			P 0	utcom	s (DCU	ic (c)
Course Outcomes	1	2	2	Δ	5	6	7	Q	٥	10	11	12	1	2	2	з <u>ј</u>
CO1	 _1	2 2	5		<u> </u>	0	,	0	9	10	11	12	- <u>-</u>	2	5	
(0)	2	2	-	-	-	-	-	-	-	-	-	-	2	-	-	-
 	ר ר	2	 ス	-	-	1	1	1	-		-	1	े २	2	1	1
<u> </u>	ר ר	2	2	-	-	1	1	1	+_	-	-	1	ך ר	2	1	1
CO5	3	2	2	-	-	1	1	1	-	-	-	1	3	2	1	1

1 1 -

3 2 2

21UME 503 C		03 - Credits		
L:T:P – 2: 2 : 0	OPERATIONS RESEARCH	CIE Marks : 50		
Total Hours/Week: 04		SEE Marks : 50		

Unit - I	10 Hrs							
INTRODUCTION Definition, scope of Operations Research (OR) approach and limitations of OR Models, and phases of OR	Characteristics							
LINEAR PROGRAMMING PROBLEMS								
09 Hours Linear programming, graphical m	ethod, simplex							
UNIT - II	10 Hrs							
TRANSPORTATION PROBLEMS								
Mathematical model for Transportation problem, balanced and unbalanced transport. Methods to solve transportation problem, finding basic feasible solution, testing solution f	ation problem. for optimality							
ASSIGNMENT PROBLEMS								
Formulation, unbalanced assignment problem, travelling salesman problem								
Unit - III	10 Hrs							
Johnson's algorithm, n - jobs to 2 machines, n - jobs 3machines, n -jobs m machines v sequence. 2 jobs n machines with passing. Graphical solutions priority rules. PERT-CPM TECHNIQUES: Project network construction, Critical Path Method (CPM), determination of critical Evaluation and Review Technique (PERT), probability of completing a project in a schedule	vithout passing I path, Project ed date.							
Unit - IV	10 Hrs							
GAME Laws of Probability, Formulation of games, two people-Zero sum game, games with and point, Graphical solution (2x n, m x 2 game), and dominance property.	THEORY without saddle							
REPLACEMENT MODELS Introduction, replacement of items whose maintenance and repair costs increase with time, ignoring changes in the value of money during the period, replacement of items whose maintenance costs increase with time and value of money also changes with time, replacement of items that fail suddenly, group replacement policy.								
 REFERENCE BOOKS: 1. Operations Research, Prem Kumar Gupta, D S Hira, 3rd Edition, S Chand and Com Delhi, 2008. 2. Introduction to O.R, Taha - PHI 2010 3. Operations Research, Panneerselvam R. Prentice – Hall of India, New Delbi, 2002. 	pany Ltd., New							
3. Operations Research, Panneerselvarn K, Prentice – Hall of India, New Delhi, 2002								

- 4. Operation Research, A M Natarajan, P. Balasubramani, A Tamilaravari Pearson 2005
- 5. Operations Research, S. D. Sharma, Kedarnath Ramanath and Co, 2002
- 6. Operations Research, Manohar Mahajan, Dhanpat Rai & Co. New Delhi, 2009
- 7. Operation Research, J.K.Sharma-, MacMilan 2010

Course Outcomes:

Course Outcomes: At the ed of the course, the student will be able to:

- **CO1:** Identify and appropriately formulate Linear Programming models for service and manufacturing systems from the verbal description of the real system, and apply operations research techniques and algorithms to solve these LP problems.
- **CO2:** Identify and understand the mathematical models and apply operations research techniques and algorithms to solve optimization problems like assignment, transportation, travelling salesman etc.
- **CO3:** Appropriately formulate Network and sequencing models for service and manufacturing systems, and apply operations research techniques and algorithms to analyse these problems.
- **CO4:** Enlighten to understand Multi-criteria decision techniques for the conflicts situation management and decision making under uncertainty and risk for the replacement of varied items.
 - * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Р	rog	ram	me	Out	tcon	nes	(POs))		Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	3	1	1	-	2	1	-	-	1	-	1	-	2	-	1	1	
CO2	2	1	-	-	1	1	-	-	1	-	1	-	2	-	1	1	
CO3	2	1	1	-	2	1	-	-	1	-	2	-	2	-	1	1	
CO4	1	1	1	-	1	1	-	-	1	-	-	1	2	-	1	1	

21UME 504 L		01 - Credits
L: T: P: 0: 0: 2	FLUID MECHANICS AND MACHINERY	CIE Marks : 50
Total Hours/Week: 02	LAB	SEE Marks : 50

Part – A	10 Hrs
Calibration of flow measuring device: (any 3)	
Calibration of flow measuring device: (any 3)	
Orifice plate	
Flow nozzle	
Venturimeter	
Rotameter	
V- Notch	
Determination of co efficient of friction of flow through pipe	
Determination of minor losses (Sudden Expansion, Sudden Contraction, Bend and Elbo	w) in flow
Determination of force developed by impact of jets on vanes	
PART - B	10 Hrs
Group experiments	
Performance testing of turbines	
Pelton wheel	
Francis turbine	
Performance testing of numps	
centrifugal pump	
Reciprocating pump	
Performance test on two/single stage reciprocating air compressor	
Performance test on air blower	
Course Outcomes:	
CO1 Defne, apply and analyse coefficient of discharge of Venturimeter and Orificemete	er.
CO2 Aanalyse efficiency of centrifugal pump and Reciprocating pump.	
CO3 Aanalyse efficiency of Pelton wheel and Francis Turbine.	
CO4 Analyse major losses and minor losses	
Scheme for Examination:	
One Question from Part A - 15 Marks (05 Writeup+10)	
One Question from Part B - 25 Marks (05 Writeup+20)	
Viva-Voce - 10 Marks	
Total 50 Marks	

 * Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Ρ	rog	ram	me	Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	2	1	1	3	1	2	2	3	1	1	1	1	2	1	
CO2	3	2	3	-	1	2	-	1	3	2	3	2	1	2	2	
CO3	1	1	2	1	1	3	-	1	2	2	3	1	1	1	1	
CO4	3	2	3	2	3	1	2	•	3	1	2	1	1	1	2	

21UME 507 H		03 - Credits
L:T:P - 3 : 0: 0		CIE Marks : 50
Total Hours/Week: 40	ENTREPRENEURSHIP	SEE Marks : 50

UNIT – I	10 Hrs										
Management: Introduction, Meaning, nature and characteristics of Management, S Functional areas of management, Management as a science, art of profession, Roles of Levels of Management, Development of Management Thought: early management approa	Scope and f Manager, iches.										
Planning : Nature, importance and purpose of planning process, Objectives, Types of plan only), Importance of planning – steps in planning & planning premises	s (Meaning										
UNIT – II	10 Hrs										
Organizing and Staffing: Nature and purpose of organization, Principles of organization, Types of organization, Departmentation, Committees, Nature and importance of staffing, Process of Selection & Recruitment (in brief).											
Motivation and Behavior : Hawthorns studies and its findings, Maslow's theory, X and Y theory, Immaturity theory motivation hygiene theory, McClelland"s theory of motivation.											
UNIT - III	10 Hrs										
Meaning and importance, Coordination: meaning and importance and Techniques of Co–Ordination Controlling: Meaning and steps in controlling, Essentials of a sound control system, Methods of establishing control (in brief). Entrepreneur : Meaning of Entrepreneur, Functions of an Entrepreneur, Types of Entrepreneur (only types), Role of entrepreneurs in Economic Development, Entrepreneurship in India Entrepreneurship: its Barriers											
UNIT IV	10 Hrs										
Small Scale Industries (SSI): Definition, Characteristics, Need and rationale, Objectives, Scope, role of SSI in Economic Development. Advantages of SSI Steps to start and SSI, Government policy towards SSI, Different Policies of SSI, Government Support for SSI during 5 year plans. Supporting Agencies of Government for SSI, Meaning, Nature of support, Objectives, Functions (brief). Quality Philosophy: The Meaning of Quality and Quality Improvement, Brief History of Quality Methodology. Statistical Methods for Quality Control and Improvement											
Reference Books:											
 Harold Koontz, (2010), Essentials of Management, (Eighth edition), Tata McGraw-Hil Poornima M. Charantimath, (2015), Entrepreneurship Development and Sma Enterprises, (Third edition), Pearson Education India 	l Il Business										
3. Harold Koontz, Cyril O'Donnell, (2018), Principles of Management, (Fifth edition), Mo	cGraw Hill										
4. P. C. Tripathi and P. N. Reddy, (2012), Principles of Management (Fifth edition), Tar Hill	ta McGraw										
5. Douglas C. Montgomery, (2019), Introduction to Statistical Quality Control (Eight Wiley international	th edition),										

Course Outcomes:**

At the end of the course, the student will be able to:

- **CO1** Demonstrate the ability of understanding, the nature, purpose, evolution, patterns of management. Analyze the purpose of planning, distinguish different plans and able to describe the detailed process of planning.
- **CO2** Identify and apply the nature and purpose of organizing, Departmentation, Staffing, Human factors and motivation.
- **CO3** Express the need of Leadership, concepts of directing and controlling, Demonstrate the importance of Entrepreneurship, role of Entrepreneur, Characteristics, and Classification of Entrepreneurs.

Course			Ρ	rog	ram	me	Program Specific Outcomes (PSOs)									
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	2	-	-	-	-	-	1	-
CO3	1	-	-	-	-	2	2	-	-	3	1	-	-	1	1	-
CO4	1	-	-	-	-	2	2	-	-	-	-	1	1	2	1	-

CO4 Develop the knowledge of small-scale industries, characteristics, role, and government support and quality philosophy.

21UME 511	Ε
3-0-0	

Total Hours/Week: 03

UNIT – I	09 Hrs							
Introduction to ND Testing:								
Information gathered from NDT, Defects in manufacturing Advantages and disadvantages of	of							
NDT, Comparison of destructive & Non-destructive tests, Methods of NDT, Common								
application of NDT, Flaw detection & evaluation, leak detection & evaluation, Non								
Destructive Evaluation, visual inspection								
replication microscopy technique for Non Destructive Evaluation: Specimen preparation,	,							
	00.11.1							
	09 Hrs							
Liquid Penetrant Inspection: Principles, penetrant methods, procedure, materials used,								
equipment, parameters and applications								
Magnetic Particle Inspection: Principle, general procedure, advantages & limitations,								
Direction of the Magnetic Field Importance of Magnetic Field Direction),							
Radiography Inspection: principle, X-ray radiography, equipment, Gamma-ray radiography	<i>l</i> ,							
real time radiography & film radiography , radiation safety ,advantages, disadvantages and								
applications of radiography Computed tomography: Principles, canabilities, comparison to other NDE methods. CT								
equipments industrial computed tomography applications								
	12 Hrs							
UNIT IV	12 Hrs							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A. B. C scans transmission transducers & couplants	12 Hrs							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications	12 Hrs se							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations	12 Hrs se							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples.	12 Hrs se , operating							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books:	12 Hrs se , operating							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork.	12 Hrs se , operating							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 99	12 Hrs se , operating th Edition ,							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 94 American Society Of Metals 2001.	12 Hrs se , operating th Edition ,							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 94 American Society Of Metals 2001. Course Outcomes **:	12 Hrs se , operating th Edition ,							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 94 American Society Of Metals 2001. Course Outcomes **: At the end of the course student will be able to	12 Hrs se , operating th Edition ,							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 94 American Society Of Metals 2001. Course Outcomes **: At the end of the course student will be able to CO1: To have a basic knowledge of surface N D E techniques which enable to carry out variant	12 Hrs se , operating th Edition ,							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 94 American Society Of Metals 2001. Course Outcomes **: At the end of the course student will be able to CO1: To have a basic knowledge of surface N D E techniques which enable to carry out vari inspection in accordance with the established procedures.	12 Hrs se , operating th Edition ,							
UNIT IV UItrasonic inspection: Basic equipment, advantages & limitations, inspection methods pulse echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 94 American Society Of Metals 2001. Course Outcomes **: At the end of the course student will be able to CO1: To have a basic knowledge of surface N D E techniques which enable to carry out vari inspection in accordance with the established procedures. CO2: Differentiate various defect types and select the appropriate N D T methods for bettore	12 Hrs se , operating th Edition , ious er							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 91 American Society Of Metals 2001. Course Outcomes **: At the end of the course student will be able to CO1: To have a basic knowledge of surface N D E techniques which enable to carry out vari inspection in accordance with the established procedures. CO2: Differentiate various defect types and select the appropriate N D T methods for bette evaluation CO2: Desumestation of the testing and application end pulsations of the neuronal pulsation CO2: Desumestation of the testing and application end pulsation of the pulsation of the testing and pulsation end pulsation of the testing and pulsation of testing and pulsation of testing and pulsation of tes	12 Hrs se , operating th Edition , ious er							
UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods pulse echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 91 American Society Of Metals 2001. Course Outcomes **: At the end of the course student will be able to CO2: Differentiate various defect types and select the appropriate N D T methods for betto evaluation CO2: Differentiate various defect types and select the appropriate N D T methods for betto evaluation CO3: Documentation of the testing and evaluation of the results for further analysis, diradvantages and limitations	12 Hrs se , operating th Edition , ious er							
 UNIT IV Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods pulse echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 99 American Society Of Metals 2001. Course Outcomes **: At the end of the course student will be able to CO1: To have a basic knowledge of surface N D E techniques which enable to carry out vari inspection in accordance with the established procedures. CO2: Differentiate various defect types and select the appropriate N D T methods for better evaluation CO3: Documentation of the testing and evaluation of the results for further analysis, disadvantages and limitations. 	12 Hrs se , operating th Edition , ious er							
UNIT IV UItrasonic inspection: Basic equipment, advantages & limitations, inspection methods pulse echo A, B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment, inspection methods applications. Eddy Current Inspection: Principles of operation, procedure, advantages & limitations, variables, inspection coils, eddy current instruments, application examples. Reference Books: 1. Mc Gonnagle Jj, Non Destructive –Garden And Reach Newyork. 2. Non Destructive Evalution And Quality Control Volume 17 Metals Hand Book 90 American Society Of Metals 2001. Course Outcomes **: At the end of the course student will be able to CO2: Differentiate various defect types and select the appropriate N D T methods for betto evaluation CO3: Documentation of the testing and evaluation of the results for further analysis, disadvantages and limitations. CO4: Students will be able to understand significance and suitability of various non destructive testing methods in industrial application	12 Hrs se , operating th Edition , ious er							

Course Outcomes	Programme Outcomes (POs)													rogram utcome	Specif es (PSO	ic s)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	1	-	3	2	-	3	1	3	1	-	3	2	3	3	3
CO2	2	1	-	1	1	-	2	-	3	-	-	3	2	2	-	3
CO3	3	-	-	2	-	1	1	2	2	-	-	2	1	-	2	2
CO4	1	2	1	2	-	-	-	1	-	2	1	1	1	2	2	-

21UME 512 E		03 - Credits
L:T:P - 3 : 0 : 0	Theory of Automotive Engines	CIE Marks : 50
Total Hours/Week: 03		SEE Marks : 50

UNIT – I	10 Hrs								
Introduction : Historical development of automobiles. Types of power plant, principle of engine operation. Classification of engines; V- engines, stratified charge engines, variable compression ratio engine.									
Fuel air cycles: Uses of fuel air cycle, variation of specific heats, dissociation, compardiagram of air standard cycle and fuel air cycle for SI engine, thermal efficiency consumption, effect of variables.	rison of PV y and fuel								
Two stroke and four stroke engines: Principles of engine operation(SI and CI), scavenging -systems, theoretical processes, parameters, relative merits and demerits, valve and port timing diagrams.									
UNIT – II	10 Hrs								
Liquid fuels: Properties and tests: specific gravity, viscosity, flash and fire points, calorific value, rating of fuels.									
Petrol fuel: Octane number, chemical energy of fuels, reaction equation, volatility properties of A/F mixture, combustion temp, combustion charts.									
Combustion in SI engines: Ignition limits, stages of combustion, ignition lag, effect of engine variables on ignition lag, effect of variables on flame propagation, abnormal combustion, detonation, theory of detonation, effect of engine variables on detonation, control of detonation, CFR engine, knock rating of SI engine fuels, surface ignition, SI engine.									
UNIT - III	10 Hrs								
Diesel fuels: Properties and rating of fuels; cetane number, chemical energy of fue equation, properties of A/F mixture, combustion temp, combustion charts. Vapor pressure pour point, annealing point, diesel index, carbon residue.	ls, reaction e, cloud and								
Combustion in Cl engines: Stages of combustion, air fuel ratio in Cl engines, delay period, variables affecting delay period, diesel knock, methods of controlling diesel knock, Cl combustion chambers, open and divided. Induction swirl, turbulent combustion chambers. types. M - combustion chamber.									
UNIT IV	10 Hrs								
Dual fuel and multi-fuel engines: Combustion in dual fuel engines, factors affecting combustion. Main types of gaseous fuels, supercharge knock control and performance of diesel fuel engines. Characteristics of multi fuel engines, modification of fuel system, suitability of various engines as multi fuel unit, performance of multi fuel engines.									
efficiency, thermal efficiency, specific weight, heat balance sheet, testing of engines, problems.	numerical								

Reference Books:

- 1. I.C. Engines & Air pollution by Obert, Harper & Row Roni publishers, New york, 1973 Fuels & Combustion by
- 2. Smith & Stinson,
- 3. I.C. Engines by Lichty
- 4. I.C. Engines by Maleev, CBS Pub.
- 5. 4. Combustion fundamentals by Roger A Strehlow

Course Outcomes**

At the end of the course student will be able to

- **CO1:** Compare and correlate between principles of engine operation, theoretical and actual cycle diagrams
- **CO2:** Correlate between different types of power plants and operational fuel air cycle and valve timing diagrams of CI and SI engines
- **CO3:** Analyse different phases of combustion and their significance in engine performance and study of combustion chambers
- **CO4:** Analyse the onset abnormal combustion and its impact on the engine performance and emissions

Course Outcomes Programme Outcomes (POs)													Program Specific Outcomes (PSOs)				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	2	1	1	-	-	-	1	-	-	-	-	1	1	-	-	-	
CO2	1	2	1	-	-	-	1	-	-	-	-	1	1	-	-	-	
CO3	2	1	1	-	-	-	1	-	-	-	-	1	1	-	-	-	
CO4	2	1	1	-	-	-	1	-	-	-	-	1	1	-	-	-	

21UME513E		Credits:	: 03
L:T:P - 2 : 2: 0	Non-Conventional Energy	CIE Marks	: 50
Total Hours/Week: 4		SEE Marks	s: 50
	UNIT-I		10 Hrs
Introduction Energy sources, need for disadvantages. Solar Radiation Extra-Terrestrial radiation, so Radiation: Pyranometer, shadir	non-conventional energy sources, energy alter lar constant, beam, diffuse and global radiation ng ring pyrheliometer, sunshine recorder, principle c	rnatives, advar 5 Hours 1, Measurement of working.	ntages, and
	UNIT-II		10 Hrs
Solar Kadiation Geometry Solar time, latitude, declination incidence, day length, simple p Solar Thermal Conversion Collection and storage, thern (cylindrical, parabolic, parabolo	on angle, altitude, surface azimuth angle, hour an roblems. nal collection devices, liquid flat plate collectors, bid) power generation.	ngle, zenith angl , concentrating	le, angle of collectors
	UNIT–III		10 Hrs.
Properties of wind, availability associated with wind power, w vertical axis windmills. Fundamental characteristics of Ocean Thermal Energy Convers	of wind energy in India, wind velocity and power vind machines; Types of wind machines and their ch tidal power, harnessing tidal energy, limitations. sion: Principle of working, problems associated with	from wind; majo iaracteristics, hoi OTEC	or problems rizontal and
	UNIT-IV		9 Hrs.
Energy from Biomass: Biogas production from waste l drum (constant pressure) type, Hydrogen energy: Production, Fuel cell: Principle of working. Photovoltaics: Solar cells, effici	biomass, Use of biogas in IC engines, advantages of fixed dome (constant volume) type biogas plants, c delivery, transportation and safety Applications. ency, applications, advantages,and disadvantages.	anaerobic digesti omparison.	ion, floating
Reference Books			
 Non-Convention Energ Solar energy Subhas P Non-Conventional Energ Ramesh R & Kumar K U Wakil MM, Power Plan Non – Conventional 	y Resources B H Khan McGraw Hill Education (India) Sukhatme Tata McGraw Hill 2nd Edition, 1996. rgy Sources G.D Rai Khanna Publishers 2003. I, Renewable Energy Technologies, Narosa Publishin t Technology, Mc Graw Hill Book Co, New Delhi, 200 Il Energy Sources. Rai.	Pvt. Ltd. 3rd Edit g House, New De 14.	tion. elhi, 2004
Course Outcomes			

At the end of the course, the student will be able to

- **CO1:** Calculate the day length (number of sunshine hours) depending on the day of the year, location's latitude and longitude. Illustrate radiation types.
- **CO2:** Use the sunshine recorder, pyranometer and pyrheliometer for measurement of beam and diffuse radiations. Illustrate solar thermal devices. Describe solar radiation geometry.
- **CO3:** Solve the problems on wind energy e.g. the power produced by wind mill considering the air temperature, pressure of air and wind speed. Illustrate different wind mills, tidal plants and OTEC plants
- **CO4:** Illustrate biogas plants, fuel cells and their uses, hydrogen energy and uses of PV cells

Course Outcomes			Р	rog	ram	me	P O	rogram utcome	Specifies (PSO	ic s)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	1	-	-	-	-	1	-	1	-	-	2	1	1	-
CO2	1	-	1	-	2	-	-	1	-	1	-	-	1	2	1	-
CO3	2	1	1	-	-	-	-	1	-	1	-	-	2	1	1	-
CO4	2	1	1	-	-	-	-	1	-	1	-	-	2	1	1	-

21UME 521 N		03 - Credits
L:T:P - 3 : 0 : 0	(Open Flective)	CIE Marks : 50
Total Hours/Week: 03		SEE Marks : 50

Unit - I	10 Hrs							
INTRODUCTION Definition, scope of Operations Research (OR) approach and limitations of OR Models, and phases of OR	Characteristics							
LINEAR PROGRAMMING PROBLEMS								
09 Hours Linear programming, graphical m method. Two-phase method, duality theory, dual simplex method.	ethod, simplex							
UNIT - II	10 Hrs							
TRANSPORTATION PROBLEMS								
Mathematical model for Transportation problem, balanced and unbalanced transportation problem. Methods to solve transportation problem, finding basic feasible solution, testing solution for optimality								
ASSIGNMENT PROBLEMS								
Formulation, unbalanced assignment problem, travelling salesman problem								
Unit - III	10 Hrs							
 SEQUENCING Johnson's algorithm, n - jobs to 2 machines, n - jobs 3machines, n -jobs m machines without passing sequence. 2 jobs n machines with passing. Graphical solutions priority rules. PERT-CPM TECHNIQUES: Project network construction, Critical Path Method (CPM), determination of critical path, Project 								
Evaluation and Review Technique (PERT), probability of completing a project in a schedule	d date.							
Onit - Iv	TOHIS							
GAME THEORY Laws of Probability, Formulation of games, two people-Zero sum game, games with and without saddle point, Graphical solution (2x n, m x 2 game), and dominance property.								
REPLACEMENT MODELS Introduction, replacement of items whose maintenance and repair costs increase with time, ignoring changes in the value of money during the period, replacement of items whose maintenance costs increase with time and value of money also changes with time, replacement of items that fail suddenly, group replacement policy.								
REFERENCE BOOKS:								
 Operations Research, Prem Kumar Gupta, D S Hira, 3rd Edition, S Chand and Com Delhi, 2008. Introduction to O.R, Taha - PHI 2010 Operations Research, Panneerselvam R, Prentice – Hall of India, New Delhi, 2002 Operation Research A M Natarajan, P. Balasubramani, A. Tamilarayari Pearson 20 	pany Ltd., New							

- 5. Operations Research, S. D. Sharma, Kedarnath Ramanath and Co, 2002
- 6. Operations Research, Manohar Mahajan, Dhanpat Rai & Co. New Delhi, 2009
- 7. Operation Research, J.K.Sharma-, MacMilan 2010

8.

Course Outcomes**

Course Outcomes: At the ed of the course, the student will be able to:

- **CO1:** Identify and appropriately formulate Linear Programming models for service and manufacturing systems from the verbal description of the real system, and apply operations research techniques and algorithms to solve these LP problems.
- **CO2:** Identify and understand the mathematical models and apply operations research techniques and algorithms to solve optimization problems like assignment, transportation, travelling salesman etc.
- **CO3:** Appropriately formulate Network and sequencing models for service and manufacturing systems, and apply operations research techniques and algorithms to analyse these problems.
- **CO4:** Enlighten to understand Multi-criteria decision techniques for the conflicts situation management and decision making under uncertainty and risk for the replacement of varied items.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			P	rog	ram	me	P O	rogram utcom	n Specif es (PSO	ic s)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	1	1	-	2	1	-	-	1	-	1	-	2	-	1	1
CO2	2	1	-	-	1	1	-	-	1	-	1	-	2	-	1	1
CO3	2	1	1	-	2	1	-	-	1	-	2	-	2	-	1	1
CO4	1	1	1	-	1	1	-	-	1	-	-	1	2	-	1	1

21UME 522 N	Product Docign & Ponid Prototyping	03 - Credits		
L:T:P - 3 : 0: 0	(Open elective)	CIE Marks : 50		
Total Hours/Week: 03		SEE Marks : 100		

Unit - I	10 Hrs
Introduction : Definition , importance of PD, Objectives of PD, essential requirements of product, Project team, steps in new PD, Characteristics of successful product developm cost of product development , challenges of product development, Design fremanufacturing , sequential and concurrent engineering .	f PD, who designs ent, duration and for manufacture,
Design for manufacture & assembly: Design for Manufacture and Assembly, History, I Design for Assembly, Design for Manufacture, How Does DFMA Work, Advantages of during Product Design design for Maintainability, Design for Environment Design for s Illumination design	mplementation of of Applying DFMA safety, Vision and
UNIT - II	10 Hrs
Development processes and organizations :A generic development process,Usefulness Development Process, task & responsibilities for marketing, design and manufac development: the front end process, adopting the generic product development proc diagram for variant of products, product development organizations (functional, project &	of a well-defined cturing , concept cess, process flow matrix)
Unit - III	10 Hrs
Introduction: Prototype fundamentals, definition of Prototypes, types of prototype compression in product development, RP fundamentals, RP wheel, history of RP system RP, growth of RP industry, basic principle of rapid prototyping processes, classification advantages and disadvantages of rapid prototyping Stereolithogrphy systems: principle, process details, advantages and disadvantages, appli	is, need for the ns, applications of n of RP systems .
Unit - IV	10 Hrs
Selective Laser sintering: principle, process details, advantages and disadvantages, application Fused deposition modeling : principle, , process details, advantages and disadvantages, application application for the second s	ations oplications
Laminated object manufacturing : principle, process details, LOM materials advantages a applications	nd disadvantages,
Solid Ground curing: principle of operation , machine details, advantages and disadvantag	es, applications
Reference books:	
2. C K Chua, K F Leong and C S Lim, 2010 Rapid Prototyping principles and application	s, book world
Course Outcomes:	
 At the end of the course the student should be able to: CO1: Use basics of product design as a means to manage the development of an idea from production CO2: Analyze ,evaluate and apply the generic method for product development 	i concept to

CO3: Use basics of prototyping in Product development **CO4:** Identify different rapid prototyping methods for types of raw materials

Course Programme Outcomes (POs)										Program Specific Outcomes (PSOs)						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	1	-	-	1	1	-	-	-	-	-	2	2	1	2
CO2	2	3	1	-	-	1	1	-	-	-	-	-	2	3	1	1
CO3	3	1	2	1	-	1	-	-	-	-	-	-	2	1	2	1
CO4	2	2	2	2	-	1	1	-	-	-	-	-	3	1	1	1

21UME 601 C		03 - Credits
L:T:P - 2 : 2: 0	MECHANICAL VIBRATIONS	CIE Marks : 50
Total Hours/Week: 04		SEE Marks : 50

UNIT – I	10 Hrs
Introduction: Types of vibrations, Simple Harmonic Motion (S.H.M), principle of supapplied to Simple Harmonic Motions. Beat's phenomena.	er position
UNDAMPED FREE VIBRATIONS: Single degree of freedom systems. Undamped free vibrati free vibration, stiffness of spring elements, effect of mass of spring, Compound Pendulum, frequency using Newton's law and energy method.	ion-natural f Determinat
UNIT – II	10 Hrs
DAMPED FREE VIBRATIONS: Single degree freedom systems, different types of damping, of and its importance, study of response of viscous damped systems for cases of under damp damping, Logarithmic decrement.	concept of ci
force. Reciprocating and rotating unbalance, vibration isolation transmissibility ratio due to support motion.	o harmonic e
UNIT - III	10 Hrs
 accelerometer. Whirling of shafts with and without air damping. Discussion of speeds above below critical speeds. SYSTEMS WITH TWO DEGREES OF FREEDOM: Introduction, principle modes and Normal revibration, co-ordinate coupling, generalized and principal co-ordinates,. Applications: a) Versuspension. b) Dynamic vibration absorber. 	ve and modes of shicle
UNIT IV	10 Hrs
 NUMERICAL METHODS FOR MULTI DEGREE FREEDOM SYSTEMS: Introduction, Influence coefficients, Maxwell reciprocal theorem, Reyleigh's method, Dunkerley's equation. Stodol Method of matrix iteration - Method of determination of the fundamental natural frequen Holzer's method. Introduction to Noise, Vibration, Harshness (NVH) and control: Subjective response of sou dependent human response; the decibel scale; relationship between, sound pressure level and sound intensity scale; auditory effects of noise; hazardous noise. 	la method, cy,. und: Frequer (SPL), sounc
Course Outcomes**:	
 By the end of course with aid of design data handbook students shall be able to, CO1: Understand the fundamentals, causes and the need of mechanical vibrations and main models for undammed single degree of freedom systems. CO2: Analyze the mechanical model of damped free and forced vibratory system and form mathematical models for different damping systems. CO3: Analyze and discus on different vibration measuring instruments. Ability to understar formulate mathematical models for two degree of freedom systems of theoretical an engineering systems. 	thematical ulating nd and nd real life

CO4: Analyze and formulate mathematical models for several degree of freedom systems using different numerical techniques. Able to understand causes and effects of Noise, Vibration, Harshness (NVH) and control.

Question paper pattern for SEE:

- 1. Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.
- 2. Each question carries 20 Marks and should not have more than 4 subdivisions
- 3. Any five full questions are to be answered choosing at least one from each unit.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs)			P O	rogram utcome	n Specific es (PSOs) 3 4 	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	2	1	-	1	1	-	1	-	-	1	3	2	-	-
CO2	3	3	2	1	-	1	1	-	1	-	-	1	3	2	-	-
CO3	3	3	2	1	-	1	1	-	1	-	-	1	3	2	-	-
CO4	3	3	2	1	-	1	2	-	1	-	-	2	3	2	2	2

21UME 602 C		03 - Credits
L:T:P - 2 : 2: 0	FINITE ELEMENT METHODS	CIE Marks : 50
Total Hours/Week: 04		SEE Marks : 50

UNIT – T	12 Hrs
Introduction: Equilibrium equations in elasticity subjected to body force, traction	forces, stress
strain relations for plane stress and plane strain, Boundary conditions, Initia	l conditions,
Euler's Lagrange's equations of bar, beams, Principle of a minimum potential energy	rgy, principle
of virtual work, Rayleigh-Ritz method Galerkins method and Matrix techniques .	

Basic Procedure: General description of Finite Element Method, Discretization process; types of elements 1D, 2D and 3D elements, size of the elements, location of nodes, node numbering scheme, half Bandwidth, Stiffness matrix of bar element by direct method, Properties of stiffness matrix, Preprocessing, post processing. Engineering applications of finite element method. Advantages & Disadvantages of FEM.

UNIT – II08 HrsInterpolation Models: Polynomial form of interpolation functions- linear, quadratic and cubic,
Simplex, Complex, Multiplex elements, Selection of the order of the interpolation
polynomial, Convergence requirements, static condensation. penalty approach and
elimination method.

one dimensional bar element: Recall of 1D linear bar element. Lagrangian interpolation, Higher order one dimensional elements- quadratic, Cubic element and their shape functions, properties of shape functions, Effect of temperature on 1D elements and stress calculation.

UNIT – III	10 Hrs
TWO dimensional elements: Shape functions and stiffness matrix of 2D element	ts four-Node
quadrilateral, Nine-Node quadrilateral Eight-Node quadrilateral, serendipity a	nd lagrange
comparison with 2D pascals triangle. CST and LST shape functions ,jacobian mat	rix , stiffness
matix, force terms, stress calculation and Numerical integration. Introduction to 3	3-D elements
shape function of tetrahedron element	

UNI	i — iv	

12 Hrs

TRUSSES AND BEAM ELEMENTS: Analysis of trusses and beam elements its shape functions, stiffnesmatrix and stress calculation

Heat Transfer Problems: Steady state heat transfer, 1D heat conduction governing equation, boundary conditions, One dimensional element, Functional approach for heat conduction, Galerkin approach for heat conduction, heat flux boundary condition, 1D heat transfer in thin fins

DESIGN DATA HAND BOOKS:

- 1. Design Data Hand Book K. Lingaiah, McGraw Hill, 2nd Ed. 2003.
- 2. Design Data Hand Book K. Mahadevan and Balaveera Reddy, CBS Publication
- 3. Machine Design Data Hand Book H.G. Patil, Shri Shashi Prakashan, Belgaum.
- 4. PSG Design Data Handbook PSG College of Technology, Coimbatore.

Reference Books:

- 1. The FEM its basics and fundamentals: O.C.Zienkiewicz, Elsevier, 6e.
- 2. Finite Element Method, J.N.Reddy, McGraw –Hill International Edition.
- 3. Finite Element Methods, by Daryl. L. Logon, Thomson Learning 3rd edition, 2001.
- 4. Finite Element Analysis, by H.V. Lalshminarayana, universities press, 2004.

Course Outcomes:

CO1: Generate the governing FE equations for engineering problems /Mechanical systems. **CO2:** Apply FEM to solve bars subjected to static load and thermal load

CO3: Apply the concept of lagrange interpolation for 2D and 3D elements and solve problems. **CO4:** Apply FEM to solve trusses and beam problems

Question paper pattern for SEE:

- 1. Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.
- 2. Each question carries 20 Marks and should not have more than 4 subdivisions
- 3. Any five full questions are to be answered choosing at least one from each unit.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Ρ	rog	ram	me	Out	con	nes	(POs))		P O	rogram utcome	Specif es (PSO	ic s)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	1	1	1	-	-	-	-	-	-	-	-	1	-	-	-
CO2	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-
CO3	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-
CO4	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-

21UME603C		03 - Credits
L:T:P - 2 _L : 2 _T : 0 _P	HEAT TRANSFER	CIE Marks : 50
Total Hours/Week: 04		SEE Marks : 100

Unit - I

INTRODUCTION:

Modes of heat transfer, Basic laws governing conduction, convection, and radiation heat transfer, Combined heat transfer mechanism, Overall heat transfer coefficient, Boundary conditions of 1st, 2nd and 3rd Kind. Mathematical formulation of heat conduction problems.

CONDUCTION:

Derivation of general three-dimensional heat conduction equation in Cartesian coordinate system, Special cases, 3-D conduction equation in cylindrical and spherical coordinate systems (No derivation).

ONE DIMENSIONAL CONDUCTION:

Derivation for heat flow and temperature distribution in a plane wall, Hollow cylinder and hollow sphere without heat generation, Thermal resistance concept & its importance. Composite wall, cylinder and sphere, Contact resistance, Critical thickness of insulation without heat generation, Heat transfer in extended surfaces of uniform cross-section without heat generation, Long fin, Tip insulated fin and fin with heat transfer from the tip, Fin efficiency and effectiveness, Numerical problems on above topics.

10 Hrs

10 Hrs

ONE-DIMENSIONAL TRANSIENT CONDUCTION:

Conduction in solids with negligible internal temperature gradient (Lumped system analysis), Use of Transient temperature charts (Heisler's charts) for slab, long cylinder and sphere, Numerical Problems

CONCEPTS AND BASIC RELATIONS IN BOUNDARY LAYERS:

Flow over a body, Velocity and thermal boundary layer, Critical Reynolds number, General expressions for drag coefficient and drag force, General expression for local heat transfer coefficient, Average heat transfer coefficient, Nusselt number, Flow inside a duct- velocity boundary layer, Hydrodynamic entrance length and hydro dynamically developed flow, Numerical problems based on empirical relations given in the data handbook.

FREE OR NATURAL CONVECTION:

Application of dimensional analysis for free convection, Physical significance of Grashoff number, Use of correlations of free convection for vertical, horizontal and inclined flat plates, Vertical and horizontal cylinders and spheres, Numerical problemsbased on empirical relations given in the data handbook.

Unit - III	10 Hrs

FORCED CONVECTION:

Application of dimensional analysis for forced convection, Physical significance of Reynolds, Prandtl, Nusselt and Stanton numbers, Use of various correlations for hydro dynamically and thermally developed flow inside a duct, Use of correlations for flow over a flat plate, cylinder and sphere. Numerical problemsbased on empirical relations given in the data handbook.

HEAT EXCHANGERS:

Classification of heat exchangers, Overall heat transfer coefficient, Fouling and fouling factor, LMTD

analysis of heat exchangers, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problemsbased on empirical relations given in the data handbook.

Unit - IV

10 Hrs

RADIATION HEAT TRANSFER:

Thermal radiation, Definitions of various terms used in radiation heat transfer, Stefan-Boltzmann law, Kirchhoff's law, Planck's law and Wien's displacement law. Radiation heat exchange between two parallel infinite black surfaces, Configuration factor or view factor, Intensity of radiation and solid angle; Lambert's law, Radiation heat exchange between two parallel infinite gray surfaces, Effect of radiation shield (only discussion on nonblack surfaces), Numerical problems based on empirical relations given in the data handbook.

CONDENSATION AND BOILING:

Types of condensation (discussion only), Nusselt theory for laminar condensation on a vertical flat surface (no derivation), Use of correlations for condensation on vertical flat surfaces, Horizontal tube and horizontal tube banks, Reynolds number for condensate flow, Regimes of pool boiling, Pool boiling correlations, Numerical problemsbased on empirical relations given in the data handbook.

Reference books:

- 1. Heat Transfer A Basic approach by M. Necati Ozisik Tata Mc Graw Hill International ed. 1998
- 2. Heat Transfer by Tirumaleshwar, Pearson education, 2006
- 3. Heat Transfer A Practical approach by Yunus A. Cenegal Tata Mc Graw Hill 2002
- 4. Principles of Heat Transfer by Kreith Thomson learning 2001
- 5. Fundamentals of Heat and Mass transfer By Frank P. Incropera and David P. Dewitt Johm Wiley and Sons 4th ed. 1995
- 6. Heat transfer, P.K. Nag, Tata Mc Graw Hill 2002

Course Outcomes:

At the end of the course student will be able to

CO1: Understand and correctly use the heat transfer terminology and governing laws. Formulate the steady and unsteady state unidirectional conduction heat transfer to analyze the conditions..

CO2: Understand the boundary layer concepts as applied to fluid flow fundamentals and analyze heat transfer as applied to convection heat transfer..

CO3: Analyze and design the heat exchanger equipment based on the need that fit to application.

CO4: Analyze the radiation heat transfer, radiation heat exchange between gray body surfaces and design the heat transfer systems like radiation shields etc.

CO5: Understand and evaluate the heat transfer rate in the phase change process

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Р	rog	ram	me	Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3	2	1	-	2	-	-	-	-	-	2	3	2	2	1
CO2	3	3	2	1	-	1	-	-	-	-	-	2	3	2	2	1
CO3	3	2	2	1	-	1	-	-	-	-	-	2	3	2	2	1
CO4	3	3	2	1	-	1	1	-	-	-	-	2	3	2	2	1
CO5	3	2	2	1	-	1	1	-	-	-	-	2	3	2	2	1

21UME 604 L	LIFAT & MACC TRANSFER	01 - Credits				
L: T: P: 0: 0: 2		CIE Marks : 50				
Total Hours/Week: 02	LABORATORY LAB	SEE Marks : 50				

Part – A	10 Hrs
1. Determination of Thermal Conductivity of a Metal Rod.	
2. Determination of Overall Heat Transfer Coefficient of a Composite wall.	
3. Determination of Effectiveness on a Metallic fin.	
4. Determination of Heat Transfer Coefficient in a free Convection on a vertical tube.	
5. Determination of Heat Transfer Coefficient in a Forced Convention Flow through a Pipe.	
6. Determination of Emissivity of a Surface.	
PART - B	10 Hrs
Group experiments	
Determination of Stefan Boltzman Constant.	
Determination of LMDT and Effectiveness in a Parallel Flow and Counter Flow Heat Exchan	gers
Experiments on Boiling of Liquid and Condensation of Vapour	
Performance Test on a Vapour Compression Refrigeration.	
Performance Test on a Vapour Compression Air – Conditioner	
Experiment on Transient Conduction Heat Transfer	
Course Outcomes:	
CO1: To be able to Define, understand, apply and analyze conduction heat transfer princip	oles
CO2: To be able to Define, understand and analyze transient heat 56 transfer principles	
CO3: To be able to Define, understand and analyze forced and free convection heat transferences	er
CO4: To be able to Define understand and analyze the heat radiation phase change heat	transfer
and mass transfer principles	transfer
Scheme for Examination:	
One Question from Part A - 15 Marks (05 Writeup+10)	
Une Question from Part B - 25 Marks (05 Writeup+20)	
Total 50 Marks	
* Books to be listed as per the format with decreasing level of coverage of syllabus	
** Each CO to be written with proper action word and should be assessable and quan	tifiable

Course				Pro	Program Specific Outcomes (PSOs)											
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	-	-	1	-	-	-	-	-	1	1	3	2	-	-
CO2	3	2	-	-	1	-	-	-	-	-	1	1	3	2	-	-
CO3	1	1	-	-	1	-	-	-	-	-	1	1	1	1	-	-
CO4	1	1	-	-	1	-	-	-	-	-	1	1	1	1	-	-

21UME 605 L		01 - Credits					
L: T: P: 0: 0: 2	DYNAMICS LABORATORY	CIE Marks : 50					
Total Hours/Week: 02		SEE Marks : 50					

	Part – A	10 Hrs
1.	Determination of natural frequency, logarithmic decrement, damping ratio an coefficient in	d damping
2	a. single degree of freedom vibrating systems (longitudinal and torsional)	
2.	Balancing of rotating masses.	
З. Д	Determination of Fringe constant of Photo elastic material using	
5.	Circular disc subjected to diametric compression.	
6.	Pure bending specimen (four point bending)	
7.	Determination of stress concentration using Photo elasticity for simple compe	onents like
	plate with a hole under tension or bending, circular disk with circular h compression.	iole under
	PART - B	10 Hrs
	Group experiments	
1.	Determination of equilibrium speed, sensitiveness, power and effort of Por	ter/Prowel
	/Hartnel Governor. (Only one or more)	
2.	Determination of Pressure distribution in Journal bearing.	
3.	Determination of Principal Stresses and strains in a member subjected to combin	ed loading
	using Strain rosettes.	
4.	Determination of natural frequency of compound pendulum.	
5.	Experiments on Gyroscope	
Course	Outcomes:	
CO1: St	udents are able to understand Degree of freedom and distinguish longitudinal vibra	ition and
	orsional Vibration.	
CO2: 51	udents realize the importance of damping	
CO4: St	udents will observe the various fringe pattern from photo elastic material and calcu	late fringe
cc	postant.	
Scheme	e for Examination:	
One Qu	estion from Part A - 15 Marks (05 Writeup+10)	
One Qu	estion from Part B - 25 Marks (05 Writeup+20)	
Viva-Vo	ce - 10 Marks	
Total 50	-) Marks	

Course Outcomes			Р	rog	ram	me	Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	1	1	2	1	2	1	1	2	-	-	-	2	2	1	2
CO2	2	3	1	2	-	1	1	-	-	-	-	-	2	2	1	1
CO3	3	1	2	1	-	1	-	-	-	-	-	-	3	1	3	1
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

21UME611C	
L:T:P - 3 : 0: 0	NON DESTRUCTIVE TESTING
Total Hours/Week: 03	

03 - Credits								
CIE Marks : 50								
SEE Marks : 50								

UNIT – I	10 Hrs						
Introduction to ND Testing: Information gathered from NDT, Defects in manufacturing A and disadvantages of NDT, Comparison of destructive & Non-destructive tests, Metho Common application of NDT, Flaw detection & evaluation, leak detection & evaluation Destructive Evaluation, visual inspection	Advantages ds of NDT, ation, Non						
Replication microscopy technique for Non Destructive Evaluation: Specimen preparation, techniques, and micro structural analysis	replication						
UNIT – II	10 Hrs						
Liquid Penetrant Inspection: Principles, penetrant methods, procedure, materials used, e parameters and applications Magnetic Particle Inspection: Principle, general procedure, a & limitations, applications, magnetic field generation, types of magnetic particles and liquids, Direction of the Magnetic Field, Importance of Magnetic Field Direction	equipment, advantages suspension						
UNIT - III	10 Hrs						
Radiography Inspection: principle, X-ray radiography, equipment, Gamma-ray radiography radiography & film radiography, radiation safety, advantages, disadvantages and app radiography Computed tomography: Principles, capabilities, comparison to other NDE met equipments, industrial computed tomography applications	y, real time lications of hods, CT						
UNIT IV	10 Hrs						
Ultrasonic inspection: Basic equipment, advantages & limitations, inspection methods puls B, C scans transmission transducers & couplants Thermal Inspection: Principles, equipment of applications Eddy Current Inspection: Principles of operation, p advantages & limitations, operating variables, inspection coils, eddy current instruments, a examples							
 Reference Books: 1. NON DESTRUCTIVE EVALUTION AND QUALITY CONTROL, METALS HAND BOOK, SOCIETY OF METALS, 9TH, EDITION 2001 2. NON DESTRUCTIVE –GARDEN AND REACH, MC GONNAGLE JJ NEWYORK 	AMERICAN						
Course Outcomes:							
 By the end of course with aid of design data handbook students shall be able to, CO1: To have a basic knowledge of surface N D E techniques which enable to carry out var inspection in accordance with the established procedures. CO2: Differentiate various defect types and select the appropriate N D T methods for bette evaluation CO3: Documentation of the testing and evaluation of the results for further analysis CO4: Students will be able to understand significance and suitability of various non destruct 	ious r						
	tive						

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Р	rog	ram	me	Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1																
CO2																
CO3																
CO4																

21UME 612 E		03 - Credits
L: T: P:- 3 : 0 : 0	TECHNOLOGY	CIE Marks : 50
Hrs./Week : 03		SEE Marks : 50

UNIT – I	10 Hrs						
Introduction: Introduction to CAD/CAM, product system facilities: Low, medium and high. Manufacturing support systems, Automation in production systems. Automated manufacturing systems. Computerized manufacturing systems. Reasons for automating, Automation principles and strategies. Discussions.							
Fundamentals of Automated Production Lines: Introduction, System configurations, transfer mechanisms, Storage buffers, Control of the production line.	Workpart						
UNIT – II	10 Hrs						
 Analysis of Transfer Lines: Analysis of Transfer Lines with no internal storage: Basic termi Performance measures, Workstation breakdown analysis: Upper bound approach, Log approach, and Analysis of Transfer Lines with storage buffers. Numerical examples. Automated Assembly System: Introduction, System configurations, Parts delivery at workstations. Quantitative analysis: Parts delivery system, Multi-station and single statio machines. Partial automation. 	nology and wer bound orkstations, n assembly						
UNIT - III	10 Hrs						
programming exercises. Computer Assisted Part Programming: Defining part geometry, Specifying tool path and sequence, Computer task in computer-assisted part programming, Part programming exercises.	operation with APT						
UNIT IV	10 Hrs						
 Product life cycle management: Introduction, Product information, PLM framework, Benefits, Implementation, Enabling technologies, Example of business problem. Product data management: Evolution of PDM systems, Scope, Benefits, Implementation, Software capabilities, software functions Advances in Automated Factory: Industry 4.0: functions, applications and benefits, Components of Industry 4.0, Internet of things (IoT), IoT applications in manufacturing, Big-Data and cloud computing for IoT IoT for smart manufacturing 							
Reference Books:							
 Groover M. P., Automation, Production Systems and CIM, Prentice Hall of India, 20 Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill, 2008. P. N. Rao, CAD/CAM Principles and Applications, 2nd Edition Computer Integrated Manufacturing, Bharat Vijamuri, Sunstar Publisher, 4th Edition 	08.						
Course Outcomes**:	n, 2018.						

At the end of the course student will be able to

CO1: Read and demonstrate good comprehension of study of two aspects of production systems and how they are sometimes automated and /or computerized in modern industrial

practice

CO2: Apply basic methods of examination of the technology of automated production lines and develop several mathematical models that can be used to analyze their operationCO3: Evaluate, integrate, and apply programmable automation in which the mechanical actions of the machine tool or other equipment are controlled by a program containing coded alphanumeric data.

CO4: Properly understand PLM; why it is crucial for companies to implement, what a PLM system offers, what PDM is and its relationship to PLM and study the functions and components, applications and benefits of Industry 4.0, Concept of IoT.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes			Р	rog	ram	me	Program Specific Outcomes (PSOs)									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	2	1	-	-	-	2	1	2	2	1	2	2	2	1	-
CO2	2	2	2	-	-	-	2	1	2	2	1	2	2	2	2	-
CO3	2	2	1	-	-	-	2	1	2	2	1	2	1	1	2	-
CO4	2	2	2	-	-	-	2	1	2	2	1	2	2	2	1	-
		High -3, Medium – 2, Low - 1														

21UME 613 E		03 - Credits
L:T:P - 3 : 0: 0	OPERATION MANAGEMENT	CIE Marks : 50
Total Hours/Week: 3		SEE Marks : 50

UNIT – I	10 Hrs										
Introduction: Functional subsystems of organization, System concept of production, Types of production system, Productivity, strategic management, World class manufacturing.											
Product Design and Analysis: New product development concepts, Process planning and design, Value analysis/Value engineering, Make or buy decision, Ergonomic consideration in product design											
UNIT – II	12 Hrs										
Forecasting: Nature and use of forecasting, Sources of data, Demand patterns, Factors affecting forecast, types of forecasting, Forecasting Models – Linear Regression, Simple moving average, weighted moving average, e, Single exponential smoothing, Double exponential smoothing, Adjusted exponential smoothing and Delphi method.											
Facility Location: Introduction, factors influencing plant location, break even analysis, single facility location problem, Minimax location problem and gravity location problem.											
UNIT - III	10 Hrs										
procedures – Computerized Relative Allocation of Facilities Technique (CRAFT), Automated Layout Design Program (ALDEP) and, Computerized Relationship Layout Planning (CORELAP). Line Balancing: Concept of mass production system, objective of assembly line balancing, rank											
UNIT IV	14 Hrs										
 Modern Production Management Tools: Just-In-Time manufacturing – introduction and JIT, basic principles, push/pull production, kanban systems (pull systems). Total Quality Ma – scope of TQM, benefits of TQM, quality control activities during product cycle, operat costs. Kaizen – Key elements of kaizen, classification of kaizen, steps of implementation Blitz, guidelines of kaizen team, benefits of kaizen. Lean Manufacturing – step manufacturing, components of lean manufacturing. Reference Books: 	overvies of anagement ting quality n of kaizen os of lean										
 Production and Operations Management, R. Panneerselvam. Prentice Hall of India Pvt Analysis and Control of Production Systems, 2nd Edition, Elsayed A. Elsayed, Thomas Opearson, 1994 Production and Operations Management, R. B. Khanna, PHI, 2010. Modern Production/Operations Management, Buffa, Wiley Eastern Ltd.2001 	Ltd. 2005. D. Boucher,										
 Operations Management, Joseph G MonksMc Hill 1987. 	Graw										

Course Outcomes:

At the ed of the course, the student will be able to:

CO1: Contribute to the development of a team-oriented and collaborative environment.

CO2: Solve business problems using decision-supported tools and/or research skills.

CO3: Demonstrate professional communication skills using a variety of delivery methods

CO4: Analyze business concepts and apply strategic planning skills to effect change in an integrated

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course Outcomes	Programme Outcomes (POs)											P O	rogram utcome	Specif es (PSO	ic s)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-
CO2	2	1	1	1	-	-	-	-	1	1	-	1	-	-	-	-
CO3	1	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-
CO4	1	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-

21UME621 N		Credits: 03		
L:T:P 3:0:0	ENGINEERING ECONOMICS	CIE Marks : 50		
Total Hours/Week : 03		SEE Marks : 100		

UNIT – I	10 Hrs								
Introduction: Engineering and Economics, Definition, Engineering Decision-Makers, Problem solving and Decision making, Law of demand and supply, Law of returns, Interest and Interest factors: Interest rate, Simple interest, Compound interest, Cash - flow diagrams, Exercises and Discussion. Present Worth Comparisons: Conditions for present worth comparisons, Basic Present worth comparisons, Present worth equivalence, Net Present worth, Assets with unequal lives, infinite lives, Future worth comparison, Pay-back comparison, Exercises and Discussion.									
UNIT – II	10 Hrs								
 Equivalent Annual worth Comparisons: Equivalent Annual Worth Comparison methods, for Equivalent Annual Worth Comparisons, Consideration of asset life, Comparison of a equal and unequal lives, Use of shrinking fund method, Annuity contract for guarantee Exercises and Discussion. Rate of Return Calculations: Rate of return, Minimum acceptable rate of return misconceptions, Exercises and Discussion. 	Situations assets with ed income, , IRR, IRR								
UNIT - III	10 Hrs								
Depreciation: Causes of Depreciation, Basic methods of computing depreciation charges. Estimating and Costing: Components of costs such as Direct Material Costs, Direct Labor Costs, Fixed Over-Heads, Factory cost, Administrative Over-Heads, First cost, Marginal cost, Selling price, Estimation for simple components.									
UNIT IV	10 Hrs								
 Introduction Financial Statements: Statements of Financial Information: Introduction, financial information, financial statements, Balance sheet, Profit and Loss account, relation Balance sheet and Profit and Loss account. Financial Ratio Analysis: Introduction, Nature of ratio analysis, Liquidity ratios, Lever Activity ratios, Profitability ratios, Evaluation of a firm's earning power. Comparative analysis. 	Source of n between age ratios, statements								
Reference Books:									
 James L. Riggs, David D. Bedworth, Sabah U. Randhawa, Thirteenth repr Engineering Economics, 4th Ed, Tata McGraw Hill. Leland Blank & Anthony Tarquin (2019) Basics of Engineering Economy, 8th Edition Hill Publication (India) Private Limited., Panneerselvam, R. (2013), Engineering Economics, Second edition, PHI Learning. Thuesen H.G. (2002), Engineering economy, Second edition, PHI Learning. Banga, T. R. & Sharma S. C. (2001) Mechanical Estimating and Costing, Seventeenth Khanna Publishers; Pandey I M, (2016) Financial Management, Eleventh edition, Vikas Publishing Hou Jawahar Lal, Seema Srivastava, (2014) Financial Accounting: Principles and Prace 	int (2010) , McGraw n edition								
edition, S Chand Publishing.	ise. tices, Third								

Course Outcomes:

After completion of the course students shall be able to

CO1: Apply time value of money concepts to enhance decision-making processes.

CO2: Evaluate the economic worth of alternatives based on present worth / annual equivalent-worth / rate-of return.

CO3: Determine by adopting accounting principles depreciation charges / estimation and cost **CO4:** Interpret data sets and prepare accounting & financial statements in accordance with accounting principles and regulations. Also **Analyze** various financial ratios and draw conclusions.

Course Outcomes	rse Outcomes (Pos)													OutcomesProgramme Outcomes (Pos)Program Specific Outcomes (PSOs)							ific Os)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4					
CO1	1	2	-	1		-	-	-	-	1	2	-	1	-	-	1					
CO2	1	2	-	2	1	-	-	-	-	-	3	-	1	-		1					
CO3	1	2	-	-	-	-	-	1	-		2	-	1	-	1	1					
CO4	1	1	-	-	1	-	-	-	-	-	2	-	1	-	1	1					

21UME622N		03 - Credits
L:T:P - 3 : 0: 0	Statistical Quality Control	CIE Marks : 50
Total Hours/Week: 03		SEE Marks : 100

Unit - I	10 Hrs								
INTRODUCTION : The meaning of quality and quality improvement, Quality of design, factors controllin quality of conformance, factors controlling quality of conformance, Quality of perfo function,Quality control, Aims of quality control, Quality characteristicsCost of quality for quality control Benefits of statistical quality control Variables and attributes MODELING PROCESS QUALITY : The concept of variation Gathering of data, Tabular summarization of data Classifica Objects of classification The frequency distribution Diagrammatic and graphic pres- representation of frequency distribution (Histogram, frequency polygon, bar chart, ogin of central values(averages) Types of averages (Mean, median and mode) Measures of standard deviation variance)	g quality of design, rmance,The quality Statistical methods cion and tabulation rentation Graphical re curve) Measures dispersion (Range,								
UNIT - II	10 Hrs								
CONTROL CHARTS: Introduction to control charts Chance and assignable causes of variation Types of control charts Control charts for variables Control chart for average and range ($\overline{x} R$) Control chart for average and standard deviation ($\overline{x} \sigma$) Process capability Numerical problems									
Unit - III	10 Hrs								
 CONTROL CHARTS FOR ATTRIBUTES: Construction and use of p np c and u charts Numerical problems Control Chart for Fraction Nonconforming — p chart Control Chart for Nonconforming — np chart Control Chart for Nonconformities — c chart Control Chart for Nonconformities per unit — u chart 									
Unit - IV	10 Hrs								
ACCEPTANCE SAMPLING : Lot by lot acceptance sampling for attributes The acceptance sampling problems Advantages & disadvantages of sampling plans single sampling plan for attributes The OC curve Designing a single sampling plan Double sampling plan Multiple sampling plan Sequential sampling plan Dodge and roming sampling plan, LTPD plan AOQL curves Reference books:									
1. Statistical quality control : RC Gupta , khanna Publishers New Delhi 2005									
2.Statistical quality control : E. L.Grant and R.S.Leavenworth, 7 edition Mc Graw Hill 3.Statistical quality control : Mahajan									
Course Outcomes:									
At the end of the course the student should be able to: CO1: Apply the philosophy and basic concepts of quality improvement									
CO3: Acquire knowledge on the traditional statistical quality control methods and develop charting techniques

Course		Programme Outcomes (POs)/ Programme Specific Outcomes (Pso)														
(COs)	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
1	1	3	2	2	-	-	-	-	-	-	-	-	3	2	1	3
2	2	3	2	3	-	-	-	-	-	-	-	-	1	2	1	1
3	2	3	3	3	-	-	-	-	-	-	-	-	2	3	2	1
4	2	3	3	2	-	-	-	-	-	-	-	-	3	1	2	1

CO4: Perform analysis to design, use, and interpret control charts for attributes

21UME 711 E		03 – Credits
L: T: P – 3: 0: 0	THEORY OF ELASTICITY	CIE Marks : 50
Hrs./Week : 03		SEE Marks : 50

UNIT – I	10 Hrs										
DEFINITIONAND NOTATION: Stress, Stress at a Point, Equilibrium Equations, Principal St Diagram, Maximum Shear Stress, Boundary Conditions.	resses, Mohr's										
STRAIN AT A POINT: Compatibility Equations, Principal Strains, Generalized Hooke's law, N Solution of Elasticity Problems – Plane Stress-Plane Strain Problems.	1ethods of										
UNIT – II	10 Hrs										
 TWO DIMENSIONAL PROBLEMS: Cartesian co-ordinates – Airy's stress functions – Investigation of Airy's Stress function for simple beam problems – Bending of a narrow cantilever beam of rectangular cross section under edge load – method of Fourier analysis – pin ended beam under uniform pressure. GENERAL EQUATIONS IN CYLINDRICAL CO-ORDINATE: Thick cylinder under uniform internal and / or external pressure, shrink and force fit, stress 											
UNIT - III	10 Hrs										
 STRESSES IN AN INFINITE PLATE: Stress in infinite plate with a circular hole subjected to uniaxial and biaxial loads, stress concentration, stresses in rotating discs and cylinders. TORSION OF CIRCULAR, ELLIPTICAL AND TRIANGULAR BARS: Torsion of circular, elliptical and triangular bars, membrane analogy, torsion of thin open sections and thin tubes. 											
UNIT IV	10 Hrs										
THERMAL STRESSES: Thermo elastic stress strain relationship, Equations of equilibrium The in thin circular discs. UNIQUENESS THEOREM: Principle of super position, reciprocal theorem, Saint Venant principle of super position.	ermal stresses nciple.										
Reference Books:											
 Applied Elasticity-C.T. Wang-Tata Mc. Graw Hill-1953 Theory of Elasticity -Sadhu Singh-Khanna Publishers-1997. Elasticity in Engineering Mechanics, , -A. P. Boresi and K. P. Chong- John Wiley &Sons-2nd Edition, 2000. Advanced Strength and Applied ElasticityA. C. Ugural and S. K. Fenster-Elsevier-2nd Edition, 1987 Theory of elasticity -T.G.Sitaram-Springer-2021 Advanced Mechanics of solids -L. S. Srinath-Tata Mc. Graw Hill-2003 Theory of Elasticity-S. P. Timoshenko and J. N Goodier-Tata Mc. Graw Hill-2006 Elasticity: Theory, Applications and Numeric's-Martin H. Sadd,-Academic Press, -2010 											
Course Outcomes:											
By the end of course with aid of design data handbook students shall be able to, CO1: Formulate concepts in continuum mechanics of solids, including of strain, internal force, stress and equilibrium in solids											

CO2: Apply and solve the basic problems of the theory of elasticity by using Airy function expressed as biharmonic function. And in polar coordinate system.

CO3: Apply and solve torsion problems in bars and thin walled members.

CO4: Formulate index notation of equations, tensor and matrix notation applied to thermal Problems

Question paper pattern for SEE:

- 1. Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.
- 2. Each question carries 20 Marks and should not have more than 4 subdivisions
- 3. Any five full questions are to be answered choosing at least one from each unit.

Course Outcomes			F	Progr	amn	ne O	utco	mes	(POs	;)			Program Specific Outcomes (PSOs)			
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1	2	3	4
CO1	1	1	1	1	-	-	-	-	-	-	-	-	1	-	-	-
CO2	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-
CO3	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-
CO4	2	1	2	1	3	-	-	-	-	-	-	-	1	-	-	-

21UME712E		03 - Credits	
L:T:P - 3 : 0: 0	Product Design & Rapid Prototyping	CIE Marks : 50	
Total Hours/Week: 03		SEE Marks : 100	

Unit - I	10 Hrs								
Introduction : Definition , importance of PD, Objectives of PD, essential requirements o product, Project team, steps in new PD, Characteristics of successful product development cost of product development , challenges of product development, Design remanufacturing , sequential and concurrent engineering .	f PD, who designs ent, duration and for manufacture,								
Design for manufacture & assembly: Design for Manufacture and Assembly, History, I Design for Assembly, Design for Manufacture, How Does DFMA Work, Advantages during Product Design design for Maintainability, Design for Environment Design for Illumination design	mplementation of of Applying DFMA safety, Vision and								
UNIT - II	10 Hrs								
Development processes and organizations :A generic development process,Usefulness Development Process, task & responsibilities for marketing, design and manufac development: the front end process, adopting the generic product development proc diagram for variant of products, product development organizations (functional, project &	of a well-defined cturing , concept cess, process flow matrix)								
Unit - III	10 Hrs								
Introduction: Prototype fundamentals, definition of Prototypes, types of prototypes, need for the compression in product development, RP fundamentals, RP wheel, history of RP systems, applications of RP, growth of RP industry, basic principle of rapid prototyping processes, classification of RP systems . advantages and disadvantages of rapid prototyping									
Unit - IV	10 Hrs								
Selective Laser sintering: principle, process details , advantages and disadvantages, applic Fused deposition modeling: principle, , process details , advantages and disadvantages, ap	ations								
Laminated object manufacturing : principle, process details, LOM materials advantages a applications	nd disadvantages,								
Solid Ground curing: principle of operation, machine details, advantages and disadvantages, applications									
Text-Books:									
 Product design & development by Karl T Ulrich and Steven D Eppinger Rapid Prototyping principles and applications by C K Chua, K F Leong and C S Lim 									
Reference Books:									
The design of everyday things by Don Norman									
 Product designs from concept to Manufacture by Jennifer Hudson 									

- Additive manufacturing by Brent Stucker, David W. Rosen, and Ian Gibson
- Engineering design and rapid prototyping by Ali K. Kamrani and EmadAbouel Nasr

Course Outcomes:

At the end of the course the student should be able to:

- **CO1:** Learning basics of product design as a means to manage the development of an idea from concept through to production
- **CO2:** Analyse ,evaluate and apply the generic method for product development
- **CO3:** Learning basics of prototyping
- CO4: Demonstrate Stereolithogrphy , selective laser sintering , fused deposition modeling , laminated object manufacturing & solid ground curing

Scheme of Examination:

Student has to solve PART-A compulsorily and from PART-B any ONE full question from each of the four UNITS.

Course Outco				Programme Specific Outcomes (Pso)												
mes	PO												PS	PS	PS	PS
(COs)	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03	04
1	3	2	1	-	-	1	1	-	-	-	-	-	2	2	1	2
2	2	3	1	-	-	1	1	-	-	-	-	-	2	3	1	1
3	3	1	2	1	-	1	-	-	-	-	-	-	2	1	2	1
4	2 2 2 2 - 1 1											3	1	1	1	

21UME713 E	INFORMATION TECHNOLOGY	03 - Credits (3 : 0 : 0)
L:T:P - 3 _L : 0 _T : 0 _P	APPROACH IN	CIE Marks : 50
Total Hours/Week: 03	MANUFACTURING	SEE Marks : 50

UNIT – I											
Information Technology and the Increasing Complexity of Manufacturing: Introductio	n, Information										
Technology for Manufacturing- Definition and Elements, Flexibility for the future	e, Recognizing										
Information Technology's Increasing Capability in a Changing World, New Manufacturing S	tyles.										

IT Systems: Computer Hardware- Fundamentals, Classification of Computers, Design Workstations, Principles of Networking, Private Computer Communication Networks, (VPN, PSDN,ISDN), Network Topologies, Transmission Media, Intranet, Internet.

UNIT – II	10 Hrs									
 Introduction to CIM Database: Database requirements of Manufacturing, Database, Features of Database Management System, Database Models-Hierarchical, Network and Relational, DBMS architecture, Query Language. SQL as a knowledge base query language. Product Data Exchange: Introduction, Types of Translators, IGES, STEP, ACIS and DXF, Processors, Case Study on STEP. 										
UNIT - III										
 Concurrent Engineering: Introduction, Implementation of concurrent engineering, Concurrent engineering and Information Technology, Soft and Hard prototyping, Characteristics of Concurrent Engineering, Key factors influencing the success of CE, Examples of CE. Collaborative Design: Introduction, Distributed Computing, Intranets and Extranets, Instant Messaging, 										
Principles,Collaborative approaches, Collaboration Tools, Collaborative Design,	Collaborative									
UNIT IV	10 Hrs									
Planning of Resources for Manufacturing through Information Systems: Introduction, Role of MRP-II in a CIM system, Manufacturing Applications, Engineering Applications, Dynamic Enterprises, ERP, SCM,										

Selection of an ERP package, ERP in India, Dynamic Enterprise Modelling (DEM). **IOT:** IoT Overview, IoT Hardware, Iot Software, IoT Technology and Protocols, IoT Common Uses, IoT Manufacturing Applications, Energy applications.

Manaracturing Applications, Energy applications.
Reference Books:
1. Radhakrishnan, Subramanyan, V. Raju, "CAD/CAM/CIM", NewAge International Publishers, Third
Edition.
2. Mikell P. Groover, "Automation, Production Systems, and Computer-Integrated Manufacturing",
Prentice-Hall of India Pvt. Ltd. Second Edition.
3. Ibrahim Zeid, "Mastering CAD/CAM", Tata McGraw-Hill Publishing Company Ltd.
4. www.tutorialpoint.com, "Internet of Things", Tutorials Point, Simply easy learning.
5. https://www.nap.edu/read/4815/chapter/1
Course Outcomes:

After completion of the course, the students

CO1: Understand and identify the manufacturing sector with the application of Information

Technology theory and tools. Learn the IT system ingredients to understand concepts, specifications, and applications.

- **CO2:** Understand the method of transforming the design and manufacturing information into data, identify the classification and application of different data management methods. Gain knowledge of Query language and knowledge of handling manufacturing data using different types of file systems.
- **CO3:** Study the role of Information Technology in manufacturing sequences comprising of various production activities. Apply the concepts of concurrent engineering, collaborative design in manufacturing network
- **CO4:** Apply the concept of the ERP in manufacturing, understand the concept of IoT and its applications

Course Outcomes			Р	rogr	amı	Program Specific Outcomes (PSOs)										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	1	2	2	1	2	1	2	2	3	2	1	1	2	2	1	2
CO2	2	2	1	1	1	1	2	1	2	1	2	2	1	3	3	2
CO3	2	1	2	1	1	3		1	2	2	1	2	2	2	2	1
CO4	2	2	2	3	1	1	2		2	1	1	2	3	3	3	3

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

21UME 714 E		03 - Credits
L:T:P – 3: 0: 0		CIE Marks : 50
Total Hours	PNEOWATICS	SEE Marks : 50

Introduction	to	Fluid	Power:	
--------------	----	-------	--------	--

Pascal's law, Applications of Pascal's law with problems using hand operated hydraulic jack and air to hydraulic pressure booster, Structure of hydraulic system

UNIT – I

Source of Hydraulic Power:

Pumping theory, pump classification and difference between positive displacement and non-positive displacement pumps, working of external gear pump and variable displacement vane pump and axial piston pump, Problems on pump flow rate, efficiency and torque.

	UNIT – II	10 Hrs
are and Matara		

Hydraulic Actuators and Motors:

Linear Hydraulic Actuators [cylinders], Problems on pressure, HP and piston velocity. Rotary gear motor and variable displacement vane motor and axial piston motor. Problems on efficiency, power, speed, displacement and torque of the motor.

Control Components in Hydraulic Systems:

Directional Control Valves – Symbolic representation, Constructional features, pressure relief valve, flow control valve and check valve, valve actuation symbols.

UNIT - III	10 Hrs
Hydraulic Circuit Design and Analysis:	
Control of single and Double – acting Hydraulic cylinder, regenerative circuit, drillin	ig machine
application, Metre-in and Metre-out circuits, pump unloading circuit and double pump	p hydraulic
system, Hydraulic Braking and Antilock Braking System (ABS) of an Automobile.	

Pneumatic Controls:

Structure of pneumatic system, Pneumatic Actuators: Linear cylinders and Rod less cylinders –types, working, advantages and disadvantages. Rotary external gear motor

Directional and Flow Control valves of pneumatics:

Poppet valves, spool valve, rotary valve, pilot operated valve, pilot operated check valve, and flow control valve

UNIT IV

10 Hrs

10 Hrs

Pneumatic Circuit Design:

Direct and indirect actuation pneumatic cylinders. Flow control valves, speed control of cylinders, supply air throttling and exhaust air throttling, quick exhaust valve and shuttle valve Use of Logic gates - OR and AND gates in pneumatic applications. Practical Examples involving the use of logic gates

Multi- Cylinder Application:

Multi- Cylinder Application: Coordinated and sequential motion control, Motion and control diagrams.

Reference Books:

- 1. Fluid Power with applications Anthony Esposito Pearson education 2000
- 2. Hydraulics and Pneumatics Andrew Parr Jaico Publishing Co. 2000
- 3. Industrial Hydraulics Pippenger Hicks McGraw Hill, New York. 2001
- 4. Hydraulic Systems Principles and Maintenance Tata S. R. Majumdar McGraw Hill publishing company Ltd. 2001
- 5. Pneumatic systems S. R. Majumdar McGraw Hill publishing company Ltd. 1995

Course Outcomes:

CO1: Apply the concepts of Pascals law to determine the force required to lift the load using hand operated hydraulic jack, air to hydraulic pressure booster and hydraulic system.

- **CO2:** Determine the overall efficiency, flow rate, speed and torque of the pump and motor for the given specifications of the pump and motor.
- **CO3:** Integrate control components into a hydraulic system using FluidSIM hydraulics simulation software teaching tool for meter-in, meter-out, drilling machine, regenerative circuit, double pump system, pump unloading circuits and ABS system applications.

CO4: Design pneumatic systems for speed control, multi cylinder sequential control and logic gates applications using FluidSIM pneumatics simulation software teaching tool..

Course	Programme Outcomes (POs) Program Specific Outcomes (PSOs)													ic s)		
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-
CO2	2	1	-	1	-	-	-	-	1	1	-	1	-	-	-	-
CO3	1	1	2	-	3	-	-	-	1	1	-	1	1	-	-	-
CO4	1	1	2	-	3	-	-	-	1	1	-	1	1	-	-	-

21UME 715 E		03 - Credits
L: T: P: 2 : 2 : 0	COMPOSITE MATERIALS	CIE Marks : 50
Hrs./Week : 03		SEE Marks : 50

UNIT – I	10 Hrs
Introduction to composite materials: Definition and classification of composites based on matrix and reinforcement, Charac composite materials, Fibrous composites, Laminate composites and particulate composit which determine the properties of composites, Benefits of composites, properties an reinforcements and matrices, Reinforcement-matrix interface.	teristics of es. Factors d types of
UNIT – II	10 Hrs
Polymer matrix composites: Introduction, Polymer matrices, Processing methods like Lay up and curing, open and close process- hand lay up techniques, laminate bag molding, production procedures for bag mo winding, pultrusion, pulforming, thermo-forming, molding methods, properties of PMCs ar Some commercial PMCs.	d mold Iding, filame Id applicatio
UNIT - III	10 Hrs
Metal matrix composites: Introduction, Metallic matrices, Classification of MMCs, Need for production of MMCs, Internet reactions, processing methods like Powder metallurgy, diffusion bonding, Melt stirring, Concasting, Squeeze casting, Liquid melt infiltration, Spray deposition and In situ Processes, Prometal matrix composites, Applications, Some commercial MMCs.	erface mpo/Rheo operties of
UNIT IV	10 Hrs
 Cutting, Machining and Joining of Composites Continuous fibers, Iso-stress condition, Iso-strain condition, critical volume fraction of minimum volume fraction of fiber, Numericals on modulus of rigidity, and mech discontinuous fibers. Cutting and machining of composites: Reciprocating knife cutting, cutting of cured composites: Mechanical fastening, Adhesive bonding. Reference Books: 	fiber and nanics of ite, Joining c
1. Composite Science and Engineering, K. K. Chawla, Springer Verlag, 1998	
 Introduction to composite materials Hull and Clyne Cambridge University Press, 2nd E 1990 Composite Materials: Engineering and Science F. L. Mathew and R. D. Rawlings, Wood Publishing Limited, 1999 Composite materials handbook, MeingSchwaitz, McGraw Hill Book Company, 1984 Mechanics of Composite Materials, Robert M. Jones, McGraw Hill Kogakusha Ltd, 1996 Composite materials, S. C. Sharma, Narosa Publishing House, 2000 Mechanics of composites, Artar Kaw,CEC Press, 2002 	dition, head 8
Course Outcomes**:	
 At the end of the course student will be able to CO1: Solve the numerical problems on modulus of elasticity of the FRP composites. Illustrate the types of composites. Factors influencing the mechanical behaviour. CO2: Analyse the critical volume fraction of fibres in the FRP composites. 	

CO3: Synthesize polymer matrix and metal matrix composites. **CO4:** Use the abrasive water jet machining of composites. Illustrate the cutting and joining of composites.

* Books to be listed as per the format with decreasing level of coverage of syllabus ** Each CO to be written with proper action word and should be assessable and quantifiable

Course	Programme Outcomes (POs)													Program Specific Outcomes (PSOs)			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	
CO1	2	1	1	-	-	-	-	1		1	-	-	2	1	1	-	
CO2	1	2	1	-	-	-	-	1		1	-	-	1	2	1	-	
CO3	-	1	1	2		-	-	1		1	-	-	-	1	1	2	
CO4	-	-	1	1	2	-	-	1		1	-	-	-	-	1	2	

21UME812E		Credits: 03
L:T:P - 3 : 0: 0	CONTROL ENGINEERING	CIE Marks: 50
Total Hours/Week: 3	_	SEE Marks: 50
	UNIT – I	10 Hrs
INTRODUCTION:		5 Hours
Concept of automatic control control system. Types of control pifferential controllers.	s, open and closed loop systems, concepts of feedb ontrollers – Proportional, Integral, Proportional In	ack, requirement of an ideal tegral, Proportional Integral
MATHEMATICAL MODELS:	al Models of Mechanical systems, and Hydraulis syste	5 Hours
Transfer function, Mathematic	LINIT – II	ems.
		10 Hrs
BLOCK DIAGRAMS AND SIGNA	AL FLOW GRAPHS:	4 Hours
Transfer Functions definition,	function, blocks representation of system elements,	reduction of block diagrams,
signal flow graphs: Mason's ga	in formula.	
TRANSIENT AND STEADY STAT	IF RESPONSE ANALYSIS:	6 Hours
Introduction, first order and se	econd order system response to step, ramp and impul	se inputs, concepts of time
constant and its importance in	speed of response. System stability: Routh's –Hurwit	z Criterion.
	UNIT - III	10 Hrs
FREQUENCY RESPONSE ANAL	YSIS:	
Polar plots: Stability Analysis,	Relative stability concepts, phase and gain margin.	5Hours
Bode Plots: stability analysis u	sing Bode plots, Simplified Bode Diagrams.	5Hours
	UNIT IV	10 Hrs
ROOT LOCUS PLOTS:		6 Hours
Definition of root loci, general	rules for constructing root loci, Analysis using root loo	cus.
CONTROL ACTION AND SYSTE	M COMPENSATION:	4 Hours
Series and feedback compensation	ation, Physical devices for system compensation.	4 Hours
·		
Reference Books:		
1. Modern Control Engin	eering, Katsuhiko Ogata University of Minnesota.	Prentice Hall, New Jersey,
5 ^{'''} edition, 2010.		the second se
 Control systems Engir 2018 	eering, I.J. Nagrath and M. Gopal, New Age Intern	ational Publisher, 6"edition,
3. Control systems Engin	neering, U.A. Bakshi and V.U.Bakshi, Technical Pu	Iblications Pune, 3 rd edition
4. Solutions and Problem	is of Control Systems, Jairath, CBS Publications Delhi,	5 th edition 2019

Course Outcomes:

At the end of the course, the student will be able to:

CO1: Apply the mathematical modeling for the mechanical and Hydraulic systems

CO2:Apply the rules of block diagrams and signal flow graphs and formulating the transfer

function

CO3: Analyze the accuracy of the systems by using graphical methods(Polar plot and Bode plot) **CO4:** Analyze the accuracy of the systems by using root locus

Question paper pattern for SEE:

1Total of eight questions with two from each unit to be set uniformly covering the entire syllabus.

- 4. Each question carries 20 Marks and should not have more than 4 subdivisions
- 5. Any five full questions are to be answered choosing at least one from each unit.

Table: Matrix to describe the mapping of POs with Cos

Course	Programme Outcomes (POs)												Program Specific Outcomes (PSOs)			
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	3	2	-	1	-	-	1	-	-	-	1	2	2	-	-
CO2	2	3	3	-	1	-	-	1	-	-	-	1	2	2	-	-
CO3	3	3	3	-	1	-	-	1	-	-	-	1	2	2	-	-
CO4	3	3 2 3 - 1 1 1										2	2 2			
		High -3, Medium – 2, Low - 1														

21UME 813 E	
Hrs./Week : 03	
Total Hours : 40	

SUPPLY CHAIN MANAGEMENT

UNIT – I	10 Hrs
Framework of Supply Chains: Introduction to supply chain, The objective of a supply mportance of supply chain decisions, Decision phases in a supply chain, Process views chain: Cycle view of supply chain processes, Push/Pull view of supply chain processes (minimum two) of Supply Chains.	chain, The of a supply , Examples
Performance of Supply Chains: Competitive and supply chain strategies, Achieving st Understanding the customer and supply chain uncertainty, Understanding the su capabilities, Achieving strategic fit, Issues affecting strategic fit, Expanding strategic scope supply chain performance, Framework for structuring drivers, Facilities, Inventory, Tran Information, Sourcing, Pricing.	trategic fit: pply chain , Drivers of sportation,
UNIT – II	10 Hrs
Designing the Supply Chain Network: The role of distribution in the supply chain, Factors distribution network design, Design options for a distribution network: Manufacturer st direct shipping (MSWDS), MSWDS and in-transit merge, Distributor storage with pack delivery, Distributor storage with last-mile delivery, Manufacturer or Distributor storage customer pick-up, Retail storage with customer pickup, Selecting a distributor network design of the store	influencing corage with age carrier orage with sign.
Transportation in a Supply Chain: The role of transportation in a Supply Chain, transportation, Design options for a transportation network: Direct shipment netw shipping with milk-runs, All shipments via central-DC, Shipping via DC using milk-run petwork. Tailored transportation: By customer density and distance. By size of customer.	Modes of ork, Direct is, Tailored The Role of

odes of , Direct Tailored e Role of IT in transportation, Risk management in transportation, Making transportation decisions in practice.

Demand forecasting in a Supply Chain: The role of forecasting in a supply chain, Characteristics of forecasts, Components of a forecast and forecasting methods, Basic approach to demand forecasting, The role of IT in forecasting, Risk management in forecasting, Forecasting in practice.

UNIT - III

Sourcing and Cross-Functional Drivers in a Supply Chain: The role of sourcing in a supply chain, Inhouse or Outsource, Risks of using a Third-party, Supplier scoring and assessment, The procurement process, Sourcing planning and analysis, The Role of IT in Sourcing, Risk Management in Sourcing, Making Sourcing Decisions in Practice.

IT	IV/	
	1 V	

10 Hrs

10 Hrs

Information Technology in a Supply Chain: The Role of IT in a supply chain, The supply chain IT framework, Customer Relationship Management (CRM), Internal supply chain management, Supplier Relationship Management (SRM), The Transaction Management Foundation, The future of IT in the supply chain, Risk Management in IT, Supply Chain IT in Practice.

Coordination in a Supply Chain: Lack of Supply Chain Coordination and the Bullwhip Effect, The Effect on performance of lack of coordination, Obstacles to coordination in a supply chain, Managerial levers to achieve coordination, Building strategic partnerships and trust within a supply chain, The Role of IT in Coordination, Achieving Coordination in Practice

Reference Books:

- 1. Supply Chain Management–Strategy, Planning & Operation. -Sunil Chopra, Peter Meindl& D V Kalra-Pearson Prentice Hall (Education, South Asia)-Third Edition 2007
- 2. Supply Chain Redesign–Transforming Supply Chains into Integrated Value Systems.-Robert B Handfield, Ernest L Nichols, Jr-Pearson Education/Financial Times Prentice Hall PTR-2002
- 3. Modelling the Supply Chain -Jeremy F Shapiro, Duxbury, Thomson Learning, 2002, ISBN 0-534-37363
- 4. Designing & Managing the Supply Chain. David Simchi Levi, Philip Kaminsky & Edith Simchi Levi; McGraw Hill

Course Outcomes:

By the end of course with aid of design data handbook students shall be able to,

- **CO1:** Demonstrate the supply chain objectives, importance, decision phases, process views, performance with strategic fit and their impact on success of a supply chain.
- **CO2:** Develop a distribution network with different modes of transportation, understanding the effect of e-business on the design of distribution networks in different industries.
- **CO3:** Express the role of forecasting and sourcing with their risk management.
- **CO4:** Analyze technology and coordination in a supply chain, applications of IT for supply chain drivers and the processes that enable supply chain performance.

Table: Matrix to describe the mapping of POs with Cos

Course		Programme Outcomes (POs)										P O	rogram utcom	Specif es (PSO	ic s)	
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	2	-	2	3	-	2	2	3	2	1	2	2	3	2	3
CO2	3	2	-	2	1	-	3	-	2	-	-	3	2	1	-	3
CO3	2	-	-	3	-	2	1	1	3	-	-	3	1	-	2	2
CO4	3	1	2	3	-	-	-	2	-	3	1	2	1	1	2	-
		High -3, Medium – 2, Low - 1														

21UME 814 E		03 - Credits
L:T:P - 3 : 0: 0	TOOL DESIGN	CIE Marks : 50
Total Hours/Week: 3		SEE Marks : 50

UNIT – I	11 Hrs
Tool Design Methods: Introduction, the de sign procedure, drafting, and design teo tooling drawing.	hniques in
Design of Cutting Tools: Introduction, the metal cutting process, revision of metal cutting point cutting tools, milling cutters, drills and drilling, reamers, taps, selection of car determining the insert thickness for carbide tools.	tools-single bide tools,
UNIT – II	11 Hrs
Locating and Clamping Methods: Introduction, basic principle of location, locating methods, basic principle of clamping. Design of Drill Jigs: Introduction, types of drill jigs, general considerations in the design	ethods and of drill jigs,
drill bushings, methods of construction.	
UNIT - III	10 Hrs
Design of Fixtures: Introduction, types of fixtures, fixtures and economic. Design of Press-working Tools: Power presses, cutting operations, types of die – cutting o and their design, evolution of blanking and progressive blanking.	perations
UNIT IV	12 Hrs
 Design of Sheet Metal Bending, Forming and Drawing Dies: Introduction, bending di dies, drawing dies, evolution of a draw die, progressive dies and selection of progressive development for progressive dies, evolution of progressive dies, examples of progre Extrusion dies, drop forging dies and auxiliary tools, problems. Plastics as Tooling Materials: Introduction, plastics commonly used as tooling materials, of epoxy plastic tools, construction methods, metal forming operations with Uret calculating forces for Urethane pressure pads, problems. 	es, forming e dies. Strip essive dies. application hane dies,
 Reference Books: 1. Cyril Donaldson, G H Lecain and V C Gold. Tool Design, 3rd edition, TMH Publishing New Delhi, 2000 2. ASTME, Fundamentals of Tool Design, PHI (P) Ltd. New Delhi, 1983 3. Machine Tool Design and Numerical Control N. K. Mehta Tata McGraw Hill Publish New Delhi 2006 4. Fundamentals of tool design Wilson F. W. ASME PHI, New Delhi 1984 	g Co. Ltd. er (P) Ltd,
Course Outcomes:	
At the end of the course student will be able to CO1: Apply the tool design procedure for cutting tools. CO2: Analyze the locating and clamping methods for tool and work piece CO3: Design the fixtures and jigs for press working tools, press tool operations CO4: Design of sheet metal bending, forming and drawing dies	

CO5: Analyze the commonly used polymer tooling materials with design aspects like pressure and forces

* Books to be listed as per the format with decreasing level of coverage of syllabus

Program Specific Programme Outcomes (POs) Course **Outcomes (PSOs)** Outcomes 1 8 2 3 4 5 6 7 9 10 11 12 1 2 3 4 1 ----CO1 2 1 -----2 2 --CO2 1 2 1 2 2 -----------1 2 2 --CO3 -----2 2 ----2 2 2 **CO4** 1 2 -----_ -----1 2 2 -----2 2 CO5 ------

** Each CO to be written with proper action word and should be assessable and quantifiable

21UME 814 E		03 - Credits (3 : 0 : 0)
L:T:P - 3 : 0: 0	POWER PLANT ENGINEERING	CIE Marks : 50
Total Hours/Week: 3		SEE Marks : 50

Introduction

Energy and power, Sources of power, Need power generation, Power plant cycles and classification of power plant cycles, Layout of modern steam power plant, Essential requirements of steam power station, Selection of site for steam power station, Capacity of steam power plant, Choice of steam conditions.

UNIT – I

Steam Power Plant:

Different types of fuels used for steam generation, Coal handling, Requirements of good coal handling plant, Coal handling systems, Equipment for burning coal in lump form, Strokers, Different types of stokers, Advantages and disadvantages of using pulverized fuel, Equipment for preparation and burning of pulverized coal, Unit system and bin system, Coal burners, Fluidized bed combustion.

UNII – II	10 Hrs
Ash and dust handling:	
Ash handling equipment and ash handling systems, Dust collection, Removal of smoke and	l dust, Dust
collectors, Efficiency of dust collectors, Uses of ash and dust, General layout of ash	n and dust
collection systems, Fly ash, Fly ash composition, disposal and application.	
Chimney draught:	
Classification, Naturaldraught, Chimney height and diameter, Condition for maximum	n discharge
through chimney, Efficiency of chimney, Draught losses, Artificial draught, Forced, In	duced and
Balanced draught, Advantages of mechanical draught, Numerical problems on chimney dra	aught.
LINIT - III	10 Hrs

Boilers:

Classification and comparison, Selection of a boiler, Essentials of good boiler, Generation of steam using forced circulation, High and supercritical pressures, L Mont, Benson, Velox, Schmidt, Loeffler and Ramson steam generators.

Accessories:

Accessories for the Steam Generator such as super-heaters, Desuperheater, Control of super heaters, Economisers, Air Pre-heaters and re-heaters, Feed water heaters and evaporators.

Performance of boilers:

Evaporative capacity, Equivalent evaporation, Factor of evaporation, Boiler efficiency, Heat losses in a boiler plant, Numerical problems on boiler performance.

UNIT IV

10 Hrs

10 Hrs

Steam turbines:

Steam nozzles, Nozzle efficiency, Compounding of steam turbines, Difference between impulse and reaction steam turbines, Turbine efficiencies. Steam condensers; Classification, Comparison between jet and surface condensers, Numerical problems on steam turbines.

Cooling ponds and Cooling towers:

Introduction, Natural and artificial ponds, Cooling ponds, Spray ponds. Cooling towers: Introduction, Natural and forced draft cooling towers, Comparison between natural and forced draft cooling

towers. Feed water treatment: Impurities in water and troubles caused by the impurities, Methods of feed water treatment, pH value of water.

Cogeneration power plants:

Classification, Topping and bottoming cycles, Advantages and disadvantages of steam power plants.

Reference Books:

- 1. Power Plant Technology ,M.M. EL-Wakil,McGraw Hill, International, 1994.
- 2. Power Plant Engineering , P.K Nag, Tata McGraw Hill, 3rd Ed. 2001
- 3. Power Plant Engineering , R.K.Rajput, Laxmi Publications, 4th Ed. 2008.
- 4. Power Plant Engineering , Domakundawar, Dhanpath Rai and sons, New delhi, 2003.

Course Outcomes**:

At the end of the course student will be able to

- **CO1:** Apply the knowledge of power plant engineering in selecting the types of fuels and burning methods to produce steam.
- **CO2:** Apply the knowledge of power plant engineering in selecting ash handling system, dust handling system and chimney draught for a steam power plant.
- **CO3:** Apply the knowledge of power plant engineering to *analyze* boilers, boiler accessories and performance of boilers.
- **CO4:** Apply the knowledge of power plant engineering to *analyze* steam turbines, cooling ponds, cooling towers and co-generation power plants.

* Books to be listed as per the format with decreasing level of coverage of syllabus

** Each CO to be written with proper action word and should be assessable and quantifiable

Course	Programme Outcomes (POs) Outcome								Programme Outcomes (POs)							
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	2	1	1	1	2	1	3	3	1	1	2	2	1	2	2
CO2	3	2	1	1	1	2	1	3	3	1	1	2	2	1	2	2
CO3	3	2	1	1	1	2	1	3	3	1	1	2	2	1	2	2
CO4	3	2	1	1	1	2	1	3	3	1	1	2	2	1	2	2

21UME 821N		03 Credits	(3:0:0)				
L:T:P - 3 : 0: 0	Fluid Power Automation	CIE Marks:50	* * *				
Total Hours/Week: 3	(Open Elective)	SEE Marks:50					
	Unit-I		10 Hours				
Introduction to Automation a	ind Pascal's law:						
Fixed Automation, Programmab	le Automation, Flexible Automation, S	tructure of hydraul	ic system.				
Pascal's law, Applications of	Pascal's law with problems usin	g hand operated	hydraulic				
jack and air to hydraulic pressure booster							
Source of Hydraulic Power:							
Pumping theory, pump classification, working of external gearpump and variable displacement							
vane pump, Problems on pump flow rate.							
Hydraulic Actuators and Motors:							
Linear Hydraulic Actuators [cylinders], Hydraulic Rotary external gear motor and vane motor.							
	Unit-II		10 Hours				
Control Components in Hydrau	lic Systems:						
Directional Control Valves – Syr	mbolic representation, Constructional	features, pressure	relief valve,				
flow control valve and check val	ve, valve actuation symbols						
Electrical components required	to operate Hydraulic system						
Normally open contact switch a	and normally closed contact switch, I	Relays and solenoid	ls, proximity				
sensors							
Electro Hydraulic Circuit Design	and Analysis:						
Control of single and Double							
	- acting Hydraulic cylinder, regene	rative circuit, drilli	ng machine				
application, Metre-in and Metr	 acting Hydraulic cylinder, regene re-out circuits, pump unloading circu 	rative circuit, drilli uit and double pun	ng machine np hydraulic				
application, Metre-in and Metr system, Hydraulic Braking and	 acting Hydraulic cylinder, regene re-out circuits, pump unloading circu Antilock Braking System (ABS) of an A 	rative circuit, drilli uit and double pun Automobile.	ng machine np hydraulic				
application, Metre-in and Metr system, Hydraulic Braking and	 acting Hydraulic cylinder, regene re-out circuits, pump unloading circu Antilock Braking System (ABS) of an A Unit-III 	rative circuit, drilli uit and double pun Automobile.	ng machine np hydraulic 10 Hours				
application, Metre-in and Metr system, Hydraulic Braking and A Pneumatic Controls:	 acting Hydraulic cylinder, regene re-out circuits, pump unloading circu Antilock Braking System (ABS) of an A Unit-III 	rative circuit, drilli uit and double pun Automobile.	ng machine np hydraulic 10 Hours				
application, Metre-in and Metr system, Hydraulic Braking and Pneumatic Controls: Structure of pneumatic system,	 acting Hydraulic cylinder, regene re-out circuits, pump unloading circu Antilock Braking System (ABS) of an A Unit-III Pneumatic Actuators: Linear cylinders 	rative circuit, drilli uit and double pun Automobile. s and Rod less cylin	ng machine np hydraulic 10 Hours ders –types,				
application, Metre-in and Metr system, Hydraulic Braking and A Pneumatic Controls: Structure of pneumatic system, working, advantages and disadv	 acting Hydraulic cylinder, regene re-out circuits, pump unloading circu Antilock Braking System (ABS) of an A Unit-III Pneumatic Actuators: Linear cylinders antages. Rotary external gear motor 	rative circuit, drilli uit and double pun Automobile. s and Rod less cylin	ng machine np hydraulic 10 Hours ders –types,				
application, Metre-in and Metr system, Hydraulic Braking and A Pneumatic Controls: Structure of pneumatic system, working, advantages and disadv Directional and Flow Control va	 acting Hydraulic cylinder, regene re-out circuits, pump unloading circu Antilock Braking System (ABS) of an A Unit-III Pneumatic Actuators: Linear cylinders rantages. Rotary external gear motor alves: 	rative circuit, drilli uit and double pun Automobile.	ng machine np hydraulic 10 Hours ders –types,				
application, Metre-in and Metr system, Hydraulic Braking and Pneumatic Controls: Structure of pneumatic system, working, advantages and disadv Directional and Flow Control va Poppet valves, spool valve, rota	 acting Hydraulic cylinder, regene re-out circuits, pump unloading circu Antilock Braking System (ABS) of an A Unit-III Pneumatic Actuators: Linear cylinders rantages. Rotary external gear motor alves: ary valve, pilot operated valve, pilot operated valve 	rative circuit, drilli uit and double pun Automobile. and Rod less cylin operated check valv	ng machine np hydraulic 10 Hours ders –types, ve, and flow				
application, Metre-in and Metr system, Hydraulic Braking and A Pneumatic Controls: Structure of pneumatic system, working, advantages and disadv Directional and Flow Control va Poppet valves, spool valve, rota control valve	 acting Hydraulic cylinder, regene re-out circuits, pump unloading circu Antilock Braking System (ABS) of an A Unit-III Pneumatic Actuators: Linear cylinders antages. Rotary external gear motor alves: ary valve, pilot operated valve, pilot	rative circuit, drilli uit and double pun Automobile. s and Rod less cylin operated check valv	ng machine np hydraulic 10 Hours ders –types, ve, and flow				

Electro-Pneumatic Circuit Design:

Direct and indirect actuation pneumatic cylinders. Flow control valves, speed control of cylinders, supply air throttling and exhaust air throttling, quick exhaust valve and shuttle valve Use of Logic gates - OR and AND gates in pneumatic applications. Practical Examples involving the use of logic gates

Multi- Cylinder Application:

Multi- Cylinder Application: Coordinated and sequential motion control, Motion and control diagrams.

Introduction to Programmable Logic Controller:

Components of PLC, Operation, constructing logic gates using Ladder logic programming. Operating DCV of cylinder using PLC, proximity switch and timer.

Reference Books:

- 1. Fluid Power with applications Anthony Esposito Pearson education 2000
- 2. Hydraulics and Pneumatics Andrew Parr Jaico Publishing Co. 2000
- 3. Industrial Hydraulics Pippenger Hicks McGraw Hill, New York. 2001
- 4. Hydraulic Systems Principles and Maintenance Tata S. R. Majumdar McGraw Hill Publishing Company Ltd. 2001
- 5. Pneumatic systems S. R. Majumdar McGraw Hill publishing company Ltd. 1995

Course Outcomes:

After completion of the course, student will be able to:

- **CO1:** Apply the concepts of Pascal's law to hand operated hydraulic jack, air to hydraulic pressure booster and hydraulic system
- **CO2:** Determine the pressure, velocity and power for double acting cylinder.
- **CO3:** Design electro hydraulic circuits for meter-in, meter-out, drilling machine, regenerative circuit, double pump system, pump unloading circuits and ABS system applications.
- **CO4:** Design electro pneumatic systems for speed control of cylinder and apply logic gates and PLC programming for pneumatic systems.

* Books to be listed as per the format with decreasing level of coverage of syllabus

Course		Programme Outcomes (POs) Program Specific Outcomes (PSOs								ific Os)						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	2	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-
CO2	2	1	-	1	-	-	-	-	1	1	-	1	-	-	-	-
CO3	1	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-
CO4	1	1	2	-	-	-	-	-	1	1	-	1	1	-	-	-

** Each CO to be written with proper action word and should be assessable and quantifiable

21UME 822N	ADVANCED MANUFACTURING	03 - Credits (3 : 0 : 0)
L:T:P - 3 : 0: 0	TECHNOLOGY	CIE Marks : 50
Total Hours/Week: 3	(Open Elective)	SEE Marks : 100

	10 Hrs						
Introduction: Introduction to CAD/CAM, product system facilities: Low, and high. Manufacturing support systems, Automation in production Automated manufacturing systems. Computerized manufacturing systems. for automating, Automation principles and strategies. Discussions.	medium systems. Reasons						
Introduction, System configurations, Work part transfer mechanisms, buffers, Control of the production line.	Storage						
UNIT - II	10 Hrs						
 Analysis of Transfer Lines: Analysis of Transfer Lines with no internal storage: Basic terminol Performance measures, Workstation breakdown analysis: Upper bound a Lower bound approach, and Analysis of Transfer Lines with storage Numerical examples. Automated Assembly System: Introduction,System configurations, Parts delivery at workstations, App Quantitative analysis: Parts delivery system, Multi-station and single assembly machines. Partial automation. 	ogy and pproach, buffers. lications. station						
Unit - III	10 Hrs						
NC Part Programming: Basic components of an NC system, EIA and ISO coding standards, NC part programming exercises. Computer Assisted Part Programming:05 Hours Definingpart geometry, Specifying tool path and operation sequence, Computer task in computer-assisted part programming, Part programming with APT exercises.							
Computer Assisted Part Programming:05 Hours Definingpart geometry, Specifying tool path and operation sequence, C task in computer-assisted part programming, Part programming with APT e	Computer Exercises.						
Computer Assisted Part Programming:05 Hours Definingpart geometry, Specifying tool path and operation sequence, C task in computer-assisted part programming, Part programming with APT e Unit - IV	Computer exercises. 10 Hrs						

Reference Books
1. Automation, Production Systems and CIM Groover M. P Prentice Hall of India 2006
2. Mastering CAD/CAM Ibrahim Zeid Tata McGraw Hill 2008
3. CAD/CAM Principles and Applications P. N. Rao Tata McGraw Hill 2nd Edition
4. Computer Integrated Manufacturing Bharat Vijamuri Sunstar Publisher 4th Edition, 2018
Course Outcomes:
At the end of the course the student should be able to:
CO1: Understand and apply good comprehension study of two aspects of
production systems and how
they are sometimes automated and /or computerized in modern industrial
practice.
CO2: Understand and apply the basic methods of examination of the technology of
automated
production lines and develop several mathematical models that can be used to analyze their
operation. Use of mechanized and automated devices to perform the various
assembly tasks in an
assembly line or cell.
CO3 :Understand, apply and integrate, programmable automation in which the
mechanical actions of
the machine tool or other equipment are controlled by a program containing
coded alphanumeric
data.
CO4: Understand and apply the basic methods of PLM; why it is crucial for
companies to implement,
what a PLM system offers, what PDM is and its relationship to PLM. Study and
apply the functions
and components, applications and benefits of Industry 4.0, Concept of IoT.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

Course	Programme Outcomes (Pos)/Programme Specific Outcomes (PSO)															
Outco	РО	РО	РО	РО	РО	PO	РО	РО	PO	РО	РО	РО	PS	PS	PS	PS
mes	1	2	3	4	5	6	7	8	9	10	11	12	01	02	O3	04
(COs)																
1	2	2	-	-	-	-	2	1	2	2	1	2	2	2	1	-
2	2	2	2	-	-	-	2	1	2	2	1	2	2	2	2	-
3	2	2	1	-	-	-	2	1	2	2	1	2	1	1	2	-
4	2	2	2	-	-	-	2	1	2	2	1	2	2	2	1	-
	High -3, Medium – 2, Low - 1															

NUME 702 L		01 - Credits (0 : 0 : 2)				
Hrs./Week : 03	VII SEIVIESTER	CIE Marks : 50				
Total Hours : 40	CNC LABORATORY	SEE Marks : 50				

Part-A

1. Programming on lathe for facing

2. Programming on lathe for simple turning

3. Programming on lathe for step turning

4. Programming on lathe for groove cutting

Part-B

5. Programming on milling with drill tap attachment for facing

- 6. Programming on milling with drill tap attachment for drilling
 - 7. Programming on milling with drill tap attachment for tool path movement

Scheme for Examination:

- 1. Each laboratory subject is evaluated for 100 marks (50 CIE and 50 SEE).
- 2. The CIE in laboratory in classes is carried out for 50 marks (30 marks for the performance and term work).
- 3. For remaining 20 marks one practical test to be conducted.

The SEE practical is conducted for 50 marks two question to be set from each Part A, and Part B. for 20 marks each and 10 marks Viva voce.

- 1. Understand the basic procedures and concepts of programming, set up and operation of a CNC Machining Center.
- 2. Identify and understand the basic programming codes.
- 3. Create geometry and tool paths from the specifications for simple parts
- 4. Identify and define the functions of the CNC machine control.
- 5. Set up the CNC machining center for manufacturing simple parts
- 6. Manufacture simple parts on the CNC machining center.

Table: Matrix to describe the mapping of POs with Cos

Course	Programme Outcomes (POs)												
(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P10	P11	P12	
1	2	3	3	3	3	1	2	1	3	2	2	3	
2	3	3	3	3	3	1	1	2	3	3	3	3	
3	2	2	2	2	1	1	2	1	3	1	2	1	
4	3	3	3	2	3	3	1	3	3	2	3	2	